The growing requirements for ultrafast communication speeds are constantly pushing the need to explore new devices and materials to reduce bottlenecks in optical communication networks. One such device is a phase only spatial light modulator implemented using liquid crystal on silicon. Achieving this requires polarization independent and fast-switching optical materials. Blue-phase liquid crystal is one such candidate. Popular opinion is that blue-phase liquid crystal is polarization-independent. In this study using microscopic and polarimetric methods, we demonstrate that in the off-state of blue-phase, the alignment layers affect the optical polarization behavior.
There are many important applications for phase-only liquid crystal on Silicon-based spatial light modulators (LCOS SLMs). Among the applications, the diffractive beam splitting, beam shaping and beam steering with LCOS SLM are finding more and more use in telecommunication applications (e.g. wavelength selective switch for ROADM, space and mode division multiplexing). However, many effects of LCOS device have to be considered if we want to get high quality output light field. For example, the ideal phase, intensity and polarization distribution in far field are usually deteriorated by the pixelated metal structure and fringing field effects. Thus, the total efficiency is decreased. By using electro-optical and electromagnetic simulation methods, we can properly incorporate the effects that influence the optical performance of LCOS and optimize the design. Furthermore we report the implementation of the high-performance high-resolution LCOS SLM for the telecommunication C- and L-band with the average insertion loss (IL) of less than 0.2 dB, achieved by the reflectivity-enhancement coating on the LCOS backplane. The experimental results on reflectivity, diffraction efficiency, crosstalk and other important parameters are compared with the theoretical predictions.
We report about the implementation of the liquid crystal on silicon (LCOS) microdisplay with 1920 by 1080 resolution and 720 Hz frame rate. The driving solution is FPGA-based. The input signal is converted from the ultrahigh-resolution HDMI 2.0 signal into HD frames, which follow with the specified 720 Hz frame rate. Alternatively the signal is generated directly on the FPGA with built-in pattern generator. The display is showing switching times below 1.5 ms for the selected working temperature. The bit depth of the addressed image achieves 8 bit within each frame. The microdisplay is used in the fringe projection-based 3D sensing system, implemented by Fraunhofer IOF.
We present the implementation results of the liquid-crystal on silicon phase-only spatial light modulator, which features high resolution, high reflectivity and improved damage threshold. The data on diffraction efficiency, flatness and temporal noises is presented as well.
We report about the implementation of the 10Megapixel phase-only liquid crystal on silicon spatial light modulator for the visible and short-wave infrared spectral bands. The pixel pitch of the SLM is less than 4 micron. Experimental data for diffraction efficiency, reflectivity, phase response, flatness and temporal noises is provided.
Phase contrast and interference microscopes are widely used for microbiological and biomedical research. However
most of them can't give high precision quantitative estimation of cell volume and morphology due to modest resolution.
We propose scheme based on a modified laser Linnik microinterferometer providing high both phase and spatial
resolutions. Red blood cell volume is calculated using integration of phase height distribution; limits of integration are
determined by Canny edge detection procedure. Experimental volume estimation fits well to volume data obtained with
other methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.