Near infrared (NIR) diffuse optical tomography has demonstrated great potential in the initial diagnosis of tumor and the assessment of tumor vasculature response to neoadjuvant chemotherapy. A fast and robust data processing is critical to move this technique from lab research to bench-side application. Our lab developed frequency-domain diffuse optical tomography system for clinical applications. So far, we still collect data at hospital and do the data processing off-line. In this paper, a robust calibration procedure and fast processing program were developed to overcome this limitation. Because each detection channel had its own electronic delay, the calibration procedure measured amplitude linearity and phase linearity of each channel, and formed a look-up table. The experimental measurements were corrected by the table and the fitting accuracy improved by 45.8%. To further improve the processing speed, the data collection and processing program were converted to C++ from matlab program. The overall processing speed was improved by two times. We expect the new processing program can move diffuse optical tomography one step close to bench-side clinical applications.
Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions.
KEYWORDS: Acquisition tracking and pointing, Imaging systems, Field programmable gate arrays, Ovary, Tumors, Ultrasonography, Tissue optics, Data acquisition, Photoacoustic spectroscopy, Digital signal processing
Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.
KEYWORDS: Imaging systems, Acquisition tracking and pointing, Ultrasonography, Field programmable gate arrays, Ovary, Tumors, Tissue optics, In vivo imaging, Pulsed laser operation, Ovarian cancer
In this paper, we report an ultrafast co-registered ultrasound and photoacoustic imaging system based on FPGA parallel
processing. The system features 128-channel parallel acquisition and digitization, along with FPGA-based reconfigurable
processing for real-time co-registered imaging of up to 15 frames per second that is only limited by the laser pulse
repetition frequency of 15 Hz. We demonstrated the imaging capability of the system by live imaging of a mouse tumor
model in vivo, and imaging of human ovaries ex vivo. A compact transvaginal probe that includes the PAT illumination
using a fiber-optic assembly was used for this purpose. The system has the potential ability to assist a clinician to
perform transvaginal ultrasound scanning and to localize the ovarian mass, while simultaneously mapping the light
absorption of the ultrasound detected mass to reveal its vasculature using the co-registered PAT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.