As device design rule has been made pattern size shrink, LELE (Litho-Etch- Litho-Etch) process is used in advance pattern process more and more. The CD control is one of the most critical factors for semiconductor manufacturing. However, the numbers of current in-line measurement points are not sufficient for the whole wafer CD monitoring. It’s the goal to increase inline monitor capacity without suffering process cycle time. To generate an innovation pattern to reach the goal is the purpose for the advance pattern process.
This paper is going to introduce the detection of CD variation by using overlay metrology in LELE process. The target mark was designed from AIM (Advanced Imaging Metrology) overlay mark. By placing Layer 1 and Layer 2 AIM pattern side by side, CD variation will cause related position changed. And it is able to be detected by overlay tool. On the other hand, overlay shift will not influence this model. It has an advantage over the conventional CD measurement tool. First, the overlay tool throughput is 5~10 times faster than traditional CDSEM and the measurement time is saved. Second, we are able to measure CD and overlay at the same time. Both CD/AA performances are considered and the throughput is also gained.
KEYWORDS: Scatterometry, Overlay metrology, Photomasks, Metrology, Scatter measurement, Semiconducting wafers, Signal processing, Front end of line, Back end of line, Optical lithography
Most fabrication facilities today use imaging overlay measurement methods, as it has been the industry’s reliable workhorse for decades. In the last few years, third-generation Scatterometry Overlay (SCOL™) or Diffraction Based Overlay (DBO-1) technology was developed, along another DBO technology (DBO-2). This development led to the question of where the DBO technology should be implemented for overlay measurements. Scatterometry has been adopted for high volume production in only few cases, always with imaging as a backup, but scatterometry overlay is considered by many as the technology of the future. In this paper we compare imaging overlay and DBO technologies by means of measurements and simulations. We outline issues and sensitivities for both technologies, providing guidelines for the best implementation of each. For several of the presented cases, data from two different DBO technologies are compared as well, the first with Pupil data access (DBO-1) and the other without pupil data access (DBO-2). Key indicators of overlay measurement quality include: layer coverage, accuracy, TMU, process robustness and robustness to process changes. Measurement data from real cases across the industry are compared and the conclusions are also backed by simulations. Accuracy is benchmarked with reference OVL, and self-consistency, showing good results for Imaging and DBO-1 technology. Process sensitivity and metrology robustness are mostly simulated with MTD (Metrology Target Designer) comparing the same process variations for both technologies. The experimental data presented in this study was done on ten advanced node layers and three production node layers, for all phases of the IC fabrication process (FEOL, MEOL and BEOL). The metrology tool used for most of the study is KLA-Tencor’s Archer 500LCM system (scatterometry-based and imaging-based measurement technologies on the same tool) another type of tool is used for DBO-2 measurements.
Finally, we conclude that both imaging overlay technology and DBO-1 technology are fully successful and have a valid roadmap for the next few design nodes, with some use cases better suited for one or the other measurement technologies. Having both imaging and DBO technology options available in parallel, allows Overlay Engineers a mix and match overlay measurement strategy, providing back up when encountering difficulties with one of the technologies and benefiting from the best of both technologies for every use case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.