Early detection of hypertension is important because hypertension leads to stroke and cardiovascular diseases. Hypertensive changes in the retina are diagnosed by measuring the arteriovenous ratio near the optic disc. Therefore, classification of arteries and veins is necessary for ratio measurement, and previous studies classified them by using pixel-based features, such as pixel values, texture features, and shape features etc. For simplification of the classification process, a convolutional neural network (CNN) was applied in this study. For evaluation of the classification process, CNN was tested using centerlines extracted manually in this study. As a result of a fourfold cross-validation with 40 retinal images, the mean classification ratio of the arteries and veins was 98%. Furthermore, CNN was tested using the centerlines of blood vessels automatically extracted using the CNN-based method for testing the fully automatic method. CNN classified 90% of blood vessels into arteries and veins in the arteriovenous ratio measurement zone. CNN had 30 trained and 10 tested retinal images. This result may work as an important processing for abnormality detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.