We investigated the influence of V-pits on the turn-on voltage of GaN-based high periodicity multiple quantum wells (MQWs) solar cells with different thickness of the p-GaN layer. Experimental current-voltage characteristics indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for samples with a thicker p-GaN layer. Focusing on the V-defects analysis, through scanning electron microscopy (SEM) we found no difference in the density and dimensions of V-pits between sample with different p-GaN thickness. Through TCAD Synopsys Sentaurus simulations, the main non-illuminated current-voltage characteristics are reproduced considering V-defects. The results indicate that V-pits play a dominant role in current conduction, especially for the devices with the thinnest p-GaN layer due to the insufficient V-pit planarization. For such devices V-pits penetrate the junctions, and locally put the MQWs region in closer connection to the p-side contact, resulting in the formation of localized short circuit paths. Finally, a Gaussian distribution of V-pits dimensions and depth is considered to reach a good matching of experimental data. Based on combined electrical analysis, microscopy investigation and 2D simulations, results provide insight on the role of V-pits on the electrical performance of GaN-based MQWs solar cells. The outcome of this work will be useful for the design of future high-periodicity quantum wells devices, ensuring the desired turn-on voltage and showing the existence of a trade-off between the need of a thin p-GaN (to increase short-wavelength efficiency) and a thicker p-GaN, to avoid insufficient V-pit planarization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.