In order to make the mask for the photolithography, e-beam direct writing system has been used because e-beam source is most controllable among the direct systems. However, the development of the new e-beam system is scheduled slowly and there is no conspicuous breakthrough technology to improve the quality of the mask comparing to the wafer exposure tool development. Lately, a new laser writing system, Sigma7300 is introduced and shows 200x reduction projection system and very high throughput relative to the e-beam direct writing system. Because it can write the full layout in a mask less than 4
hours, the high reproducibility is expected. Although the current tool is using KrF light source and 0.82NA reduction projection lens column, the higher resolution tool using the ArF light source can be expected in the future. In this paper the possible resolution limit of the Sigma7300 is discussed and the application example for the mask fabrication. To estimate the process capability, the optical simulation is performed and compared with the experimental results. Because its patterned image is not so clear like the e-beam writer, the pattern rounding, the line-end shortening, and the minimum assist feature are discussed with the patterns of the e-beam writer. At the end the important qualities of the mask like defects are compared with the results of the e-beam system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.