SignificanceArticular cartilage exhibits a zonal architecture, comprising three distinct zones: superficial, middle, and deep. Collagen fibers, being the main solid constituent of articular cartilage, exhibit unique angular and size distribution in articular cartilage zones. There is a gap in knowledge on how the unique properties of collagen fibers across articular cartilage zones affect the scattering properties of the tissue.AimThis study hypothesizes that the structural properties of articular cartilage zones affect its scattering parameters. We provide scattering coefficient and scattering anisotropy factor of articular cartilage zones in the spectral band of 400 to 1400 nm. We enumerate the differences and similarities of the scattering properties of articular cartilage zones and provide reasoning for these observations.ApproachWe utilized collimated transmittance and integrating sphere measurements to estimate the scattering coefficients of bovine articular cartilage zones and bulk tissue. We used the relationship between the scattering coefficients to estimate the scattering anisotropy factor. Polarized light microscopy was applied to estimate the depth-wise angular distribution of collagen fibers in bovine articular cartilage.ResultsWe report that the Rayleigh scatterers contribution to the scattering coefficients, the intensity of the light scattered by the Rayleigh and Mie scatterers, and the angular distribution of collagen fibers across tissue depth are the key parameters that affect the scattering properties of articular cartilage zones and bulk tissue. Our results indicate that in the short visible region, the superficial and middle zones of articular cartilage affect the scattering properties of the tissue, whereas in the far visible and near-infrared regions, the articular cartilage deep zone determines articular cartilage scattering properties.ConclusionThis study provides scattering properties of articular cartilage zones. Such findings support future research to utilize optical simulation to estimate the penetration depth, depth-origin, and pathlength of light in articular cartilage for optical diagnosis of the tissue.
Articular cartilage is a connective tissue that enables smooth movements between bones in articulating joints. Cartilage consists of extracellular matrix (ECM) and chondrocytes – the cells responsible for synthesis of the ECM. The ECM consists of type II collagen, proteoglycans, water, and some other minor components. Cartilage is prone to degenerative joint conditions, such as osteoarthritis, due to its weak repair capacity resulting from a lack of vascular, neural, and lymphatic networks. Osteoarthritis causes erosion of the cartilage matrix and therefore inhibits its function, resulting in joint pain, loss of mobility, and significant global socioeconomic burden. Currently, surgical treatment of cartilage pathologies is carried out during arthroscopy with variable outcomes. This variability occurs due to the subjective nature of arthroscopy, which relies on manual palpation and visual evaluation of the tissue surface. Diffuse optical spectroscopy in the near-infrared spectral region probes tissue structure and composition via a relationship with its optical properties (the absorption and reduced scattering coefficients). Due to its avascular nature, healthy cartilage is translucent. It thus has low absorption in the near-infrared region, providing the necessary conditions for light to traverse deep into the tissue. This research reports, for the first time, cartilage absorption and reduced scattering coefficients in the near-infrared spectral range and assess their capacity for characterizing the depth-wise profile of cartilage proteoglycan content. The results revealed that cartilage optical properties are strong predictors of its proteoglycan content. The best performance was observed with the prediction of the proteoglycan content by the absorption coefficient.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.