Current paper presents the results of the chlorine e6 (Ce6) study on 2D and 3D models of FaDu cells culture. The 2D model or monolayer was used for investigation of Ce6 distribution within individual cells and their organelles. The 3D model or multicellular tumor spheroids were used for estimation of cells’ metabolic processes by the investigation of the Ce6 fluorescence distribution within spheroid's layers and Ce6 fluorescence lifetime. It was shown that 3D cell cultures and Сe6 allows estimating the cells’ metabolic processes better than in 2D monolayer cell cultures. Also, this model allows estimating the photodynamic effect depending on the proximity to the surface of different areas inside the heterogeneous 3D structure.
Current paper presents the results of the optical neurosystem research for intracranial implantation targeted on phototheranostics of deep-lying brain tumors. Brain tumors treatment is a complicated multistage process, and currently there is a need for the user-friendly fiber optic toolkit that could allow carrying out multiple diagnostics and therapy of such neoplasms type without additional surgical intervention. The optical neurosystem developed in the framework of this study is based on the scaffold with the internal optical fiber structure placed into the tumor bed and designed for diagnostic and therapeutic laser radiation delivery. Such neurosystem, along with specific photosensitive agent application will provide malignant cells diagnostics by the fluorescent signal and permanent monitoring of processes occurring in the probed area by means of fiber optic probe with emitting and receiving fibers connected with laser source and spectrometer, respectively. The created neurosystem could be used to direct the growth of randomly proliferated deep lying brain tumor cells along the scaffold fibers towards the extracranial surface where malignant cells could be registered, identified and therapeutically affected by photodynamic action. A set of preliminary experiments devoted to spectral-optical evaluation of brain tissue properties was performed. The research of the scaffold and its inner fiber optical structure was carried out on the model samples of brain tissue phantom and in vitro on C6 glioblastoma cell line. Obtained results are being discussed.
Diagnosis improvement by means of metal nanoparticles possibilities is studied. Set of experiments to reveal their presence in deeper layers of multilayered biological tissue on optical properties is performed. Spectra in the optical range were collected on several distances, from several thicknesses of the first layer. Results are being discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.