KEYWORDS: Clouds, Sensors, 3D modeling, Inspection, Environmental sensing, Solid modeling, Data modeling, Computer aided design, RGB color model, Chemical elements
Usage of a three-dimensional (3-D) sensor and point clouds provides various benefits over the usage of a traditional camera for industrial inspection. We focus on the development of a classification solution for industrial inspection purposes using point clouds as an input. The developed approach employs deep learning to classify point clouds, acquired via a 3-D sensor, the final goal being to verify the presence of certain industrial elements in the scene. We possess the computer-aided design model of the whole mechanical assembly and an in-house developed localization module provides initial pose estimation from which 3-D point clouds of the elements are inferred. The accuracy of this approach is proved to be acceptable for industrial usage. Robustness of the classification module in relation to the accuracy of the localization algorithm is also estimated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.