In this paper, we describe an automated hand eye calibration in laparoscope holding robot for robot assisted surgery. In minimally invasive surgery, laparoscope holding robot can give more stability of the laparoscope images than human laparoscope assistants. We study on laparoscope holding robot controlled based on anatomical structure information during laparoscopic surgery. In order to operate laparoscope holding robot guided by images, it is necessary to make a vision system for laparoscope holding robot. We compute the position and orientation relationships between a laparoscope camera and a Tool Center Point (TCP) of robot arm to make a vision system. We utilize Tsai’s method for hand eye calibration to estimate the homogeneous transformation matrix between the TCP and laparoscope camera. We attached a laparoscope to an industrial robot arm. The robot arm is moved to different positions and captures calibration board images. Hand eye calibration is performed using recorded TCP positions and calibration board images. The homogeneous transformation matrices between the laparoscope camera coordinate and the laparoscope holding robot TCP coordinate is obtained by this hand eye calibration. The experimental result shown that the proposed method could compute the homogeneous transformation matrix between a laparoscope holding robot TCP and a laparoscope camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.