Proceedings Article | 15 April 2005
KEYWORDS: Picture Archiving and Communication System, Chromium, Ultrasonography, Switches, Radiology, Medical imaging, Imaging systems, Printing, Image processing, X-ray computed tomography
After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be operated on emergency power, a limited, but effective number of studies could be performed. However, in a digital department, there is a reliance on the network infrastructure to deliver images to viewing locations. The system developed for our institution uses several imaging PODS, a name we chose because it implied to us a safe, contained environment. Each POD is a stand-alone emergency powered network capable of generating images and displaying them in the POD or printing them to a DICOM printer. The technology we used to create a POD consists of a computer with dual network interface cards joining our private, local POD network, to the hospital network. In the case of an infrastructure failure, each POD can and does work independently to produce CTs, CRs, and Ultrasounds. The system has been tested during disaster drills and works correctly, producing images using equipment technologists are comfortable using with very few emergency switch-over tasks.
Purpose: To provide imaging capabilities in the event of a natural or man-made disaster with infrastructure failure.
Method: After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be operated on emergency power, a limited, but effective number of studies could be performed. However, in a digital department, there is a reliance on the network infrastructure to deliver images to viewing locations. The system developed for our institution uses several imaging PODS, a name we chose because it implied to us a safe, contained environment.
Each POD is on both the standard and the emergency power systems. All the vendor equipment that produces images is on a private, stand-alone network controlled either by a simple or a managed switch. Included in each POD is a dry-process DICOM printer that is rarely used during normal operations and a display workstation. One node on the private network is a PACS application processor (AP) with two network interface cards, one for the private network, one for the standard PACS network. During ordinary daily operations, all acquired images pass through this AP and are routed to the PACS archives, web servers, and workstations. However, if the power and network to much of the hospital were to fail, the stand-alone POD could still function. Images are routed to the AP, but cannot forward to the main network. However, they can be routed to the printer and display in the POD. They are also stored on the AP to continue normal routing when the infrastructure is restored.
Results: The imaging PODS have been tested in actual disaster testing where the infrastructure was intentionally removed and worked as designed. To date, we have not had to use them in a real-life scenario and we hope we never do, but we feel we have a reasonable level of emergency imaging capability if we ever need it.
Conclusions: Our testing indicates our PODS are a viable way to continue medical imaging in the face of an emergency with a major part of our network and electrical infrastructure destroyed.