Percutaneous radiofrequency ablation (RFA) is used to destroy small liver tumors by locally inducing heat. However, there is a high tumor recurrence rate due to insufficient real-time image guidance during the procedure. We studied multi-wavelength photoacoustic imaging for identifying ablated tissue by taking the ratio of the photoacoustic signals at two wavelengths. To realize this, we first simulated the optical penetration in the liver and its influence on the optimal wavelength pair. Finally, the photoacoustic signals of treated and untreated bovine liver tissue were measured between 680 nm to 1100 nm to find candidate wavelength pairs for successful ratio imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.