Leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability. However, long-term reliability in the space environment still remains a major concern due to a number of defects and traps as well as unknown degradation mechanisms. Thus, careful study of reliability and radiation effects of GaN HEMTs should be performed before GaN HEMT technology based solid state power amplifiers (SSPAs) are successfully deployed in space satellite systems. We studied both RF GaN HEMTs fabricated per our design and commercial high-power GaN HEMTs, both grown on SiC substrates. Our RF devices had a nominal Ni-Au Schottky gate length of 0.25 μm, a total gate width of 6 × 150 μm periphery, and a field plate, while high-power devices had a Ni-Au Schottky gate length of 0.4 μm, a total gate width of 10 × 350 μm periphery, and a field plate. First, DC and RF characteristics of RF devices were compared before and after they were aged under different conditions (DC and temperature). Focused-ion-beam was employed to prepare TEM cross sections from degraded devices for defect analysis using a high-resolution TEM. Also, we performed strain analysis on pristine and degraded devices using TEM-based techniques. Second, DC characteristics of high-power devices were compared before and after they were irradiated with protons and heavy ions. Some of devices were exposed while they were unbiased, DC biased, and DC and RF biased.
High electron mobility transistors (HEMTs) based on AlGaN-GaN hetero-structures are finding an increasing number of commercial and military applications that require high voltage, high power, and high efficiency operation. In recent years, leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, but long-term reliability in the space environment still remains a major concern due to a large number of defects and traps present both in the bulk as well as at the surface, leading to undesirable characteristics including current collapse. Furthermore, degradation mechanisms in GaN HEMTs are still not well understood. Thus, reliability and radiation effects of GaN HEMTs should be studied before solid state power amplifiers (SSPAs) based on GaN HEMT technology are successfully deployed in space satellite systems. For the present study, we investigated electrical characteristics of high-power GaN HEMTs irradiated with protons and heavy ions under various irradiation and biasing conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.