Membrane external-cavity surface-emitting lasers (MECSELs) are vertically emitting semiconductor lasers that combine all the benefits of VECSELs (vertical-external-cavity surface-emitting lasers) with the new degree of freedom in creating gain structures without monolithically integrated distributed Bragg reflectors (DBRs). The absence of the DBR and the substrate, and the use of a very thin gain membrane (typically some hundreds of nanometers), which can be sandwiched between two transparent heat spreaders, represents the best solution for heat removal. The membrane configuration also allows the option of double side pumping, which in turn makes it possible to utilize an extensive amount of quantum well (QW) groups as well as multiple kinds of QWs in a periodic laser gain structure. Here we report on design strategy and results of different kinds of approaches on broadband, relatively high power MECSEL gain structures. Especially efficient pump absorption, sufficient gain on several different wavelengths and carrier mobility during laser operation, are discussed. We also present the characteristics of the laser systems created. Results show ∼ 83 nm (∼ 25 THz) tuning range with more than 100 mW of power at all wavelengths at room temperature operation. Strategies for further development are discussed as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.