The European Space Agency (ESA), in collaboration with the European Commission (EC) and EUMETSAT, is developing as part of the EC’s Copernicus programme, a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. The anthropogenic CO2 monitoring (CO2M) mission will be implemented as a constellation of identical Low Earth Orbit satellites, to be operated over a nominal period of more than 7 years. Each satellite will continuously measure CO2 concentration in terms of column-averaged dry air mole fraction (denoted XCO2) along the satellite track on the sun-illuminated part of the orbit, with a swath width of 250 km. Observations will be provided at a spatial resolution < 2 x 2 km2, with high precision (< 0.7 ppm) and accuracy (bias < 0.5 ppm), which are required to resolve the small atmospheric gradients in XCO2 originating from anthropogenic activities. The demanding requirements necessitate a payload composed of three instruments, which simultaneously perform co-located measurements: a push-broom imaging spectrometer in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) for retrieving XCO2 and in the Visible spectral range (VIS) for nitrogen dioxide (NO2), a Multi Angle Polarimeter (MAP) and a three-band Cloud Imager (CLIM). Following the kick-off Mid 2020, the industrial activities have now passed the Satellite PDR allowing to enter in phase C/D. The paper will provide an overview of the space segment development achieved during the phase B2, including the platform, the payload activities as well as the end-to-end simulator. The preliminary design of the instruments on board the CO2M mission, the progress of the critical technological activities and the first results of the development models will be highlighted.
ECM received in May 2014 from OHB, Germany the contract for the design, fabrication, test and qualification of the Star Tracker Assembly Bracket for the next generation weather satellite (MTG - Meteosat Third Generation), developed by ESA and operated finally by EUMETSAT. In December 2018 ECM delivered the last two Flight models fully integrated and tested to OHB, Bremen. This project was for ECM a big challenge being for the first-time prime contractor of a small subsystem consisting of an assembly of metal components associated to our HB-Cesic® bracket structure. In this paper we will report about the successful manufacturing process of seven flight models including STM Model for qualification in a rather short time frame of less than 2 years after CDR. This paper is focused on the successful manufacturing and precision machining of these complex light-weighted HB-Cesic® structures with low tolerance requirements to demonstrate ECMs capability of fabricating such Star Tracker Assembly Bracket subsystems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.