Applications such as LIDAR, ranging/ sensing, and optical communications all require photonic components, such as sources, detectors, and modulators, to be integrated into a single system. For spaceborne applications, SWaP (size, weight and power) is a key consideration: a monolithic indium phosphide (InP) Photonic Integrated Circuit (PIC) can integrate many components onto a chip with a footprint of a few square mm. Photonic Wirebonding (PWB) enables seamless integration of best-in-class optical devices from disparate materials. Connecting and mode-matching different photonic components enables versatility and functionality unachievable by other methods, facilitating co-packaging. PICs and PWBs do not yet have spaceflight heritage: demonstrating increased Technology Readiness Level (TRL) is a key step toward use in orbital and spaceborne missions. Freedom Photonics presents our first hermetic photonic wirebonded PIC package, alongside recent environmental testing results demonstrating that our PIC and PWB technologies are suitable for the harsh conditions of launch and spaceflight: shock, vibration, radiation, and temperature cycling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.