Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.
Moving target detection in image sequence for dynamic scene is an important research topic in the field of computer vision. Block projection and matching are utilized for global motion estimation. Then, the background image is compensated applying the estimated motion parameters so as to stabilize the image sequence. Consequently, background subtraction is employed in the stabilized image sequence to extract moving targets. Finally, divide the difference image into uniform grids and average optical flow is employed for motion analysis. Experiment tests show that the proposed average optical flow method can efficiently extract the vehicle targets from dynamic scene meanwhile decreasing the false alarm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.