X-ray polarization measurements can provide unique information that is complementary to that obtained through spectroscopic or imaging observations. However, there have been few cases where significant x-ray polarization has been observed. XL-Calibur, conducted in collaboration between Japan, the United States of America, and Sweden, is a balloon-borne mission that aims to conduct high-sensitivity polarimetric observations in the hard x-ray band from 15 to 80 keV. The Japanese group is in charge of developing the Hard X-ray Telescope (HXT) with high light-gathering power. Optical adjustments were completed in 2020, and the performance of the HXT was measured in June 2021 at the SPring-8 (synchrotron radiation facility in Hyogo, Japan). Subsequently, in July 2022, the first observation was conducted from Sweden to Canada. After the flight, the HXT was recovered, and we measured its performance again. By comparing the HXT performances before and after the flight, we found no significant changes that can affect the second flight scheduled in 2024.
Core collapse supernovae are thought to be one of the main sources in the galaxy of elements heavier than iron. Understanding the origin of the elements is thus tightly linked to our understanding of the explosion mechanism of supernovae and supernova nucleosynthesis. X-ray and gamma-ray observations of young supernova remnants, combined with improved theoretical modeling, have resulted in enormous improvements in our knowledge of these events. The isotope Ti44 is one of the most sensitive probes of the innermost regions of the core collapse engine, and its spatial and velocity distribution are key observables. Hard x-ray imaging spectroscopy with the Nuclear Spectroscopic Telescope Array (NuSTAR) has provided new insights into the structure of the supernova remnant Cassiopeia A (Cas A), establishing the convective nature of the supernova engine. However, many questions about the details of this engine remain. We present here the concept for a balloon-borne follow-up mission called A SuperConducting ENergetic x-ray Telescope (ASCENT). ASCENT uses transition edge sensor gamma-ray microcalorimeter detectors with a demonstrated 55-eV full-width half maximum energy resolution at 97 keV. This 8- to 16-fold improvement in energy resolution over NuSTAR will allow for high-resolution imaging and spectroscopy of the Ti44 emission. This will allow for a detailed reconstruction of gamma-ray line redshifts, widths, and shapes, allowing us to address questions such as, What is the source of the neutron star kicks? What is the dominant production pathway for Ti44? Is the engine of Cas A unique?
XL-Calibur is a balloon-borne mission for hard x-ray polarimetry. The first launch is currently scheduled from Sweden in summer 2022. Japanese collaborators provide a hard x-ray telescope to the mission. The telescope’s design is identical to the Hard X-ray Telescope (HXT, conically-approximated Wolter-I optics) on board ASTROH with the same focal length of 12 m and the aperture of 45 cm, which can focus x-rays up to 80 keV. The telescope is divided into three segments in the circumferential direction, and confocal 213 grazing-incidence mirrors are precisely placed in the primary and secondary sections of each segment. The surfaces of the mirrors are coated with Pt/C depth-graded multilayer to reflect hard x-rays efficiently by the Bragg reflection. To achieve the best focus, optical adjustment of all of the segments was performed at the SPring-8/BL20B2 synchrotron radiation facility during 2020. A final performance evaluation was conducted in June 2021 and the experiment yields the effective area of 175 cm2 and 73 cm2 at 30 keV and 50 keV, respectively, with its half-power diameter of the point spread function as 2.1 arcmin. The field of view, defined as the full width of the half-maximum of the vignetting curve, is 5.9 arcmin.
This paper introduces a second-generation balloon-borne hard X-ray polarimetry mission, XL-Calibur. X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as pulsars and binary black hole systems. The XL-Calibur contains a grazing incidence X-ray telescope with a focal plane detector unit that is sensitive to linear polarization. The telescope is very similar in design to the ASTRO-H HXT telescopes that has the world’s largest effective area above ~10 keV. The detector unit combines a low atomic number Compton scatterer with a CdZnTe detector assembly to measure the polarization making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. It also contains a CdZnTe imager at the bottom. The detector assembly is surrounded by the improved anti-coincidence shielding, giving a better sensitivity. The pointing system with arcsecond accuracy will be achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.