We present a fast virtual-staining framework for defocused autofluorescence images of unlabeled tissue, matching the performance of standard virtual-staining models using in-focus label-free images. For this, we introduced a virtual-autofocusing network to digitally refocus the defocused images. Subsequently, these refocused images were transformed into virtually-stained H&E images using a successive neural network. Using coarsely-focused autofluorescence images, with 4-fold fewer focus points and 2-fold lower focusing precision, we achieved equivalent virtual-staining performance to standard H&E virtual-staining networks that utilize finely-focused images, helping us decrease the total image acquisition time by ~32% and the autofocusing time by ~89% for each whole-slide image.
We present a virtual staining framework that can rapidly stain defocused autofluorescence images of label-free tissue, matching the performance of standard virtual staining models that use in-focus unlabeled images. We trained and blindly tested this deep learning-based framework using human lung tissue. Using coarsely-focused autofluorescence images acquired with 4× fewer focus points and 2× lower focusing precision, we achieved equivalent performance to the standard virtual staining that used finely-focused autofluorescence input images. We achieved a ~32% decrease in the total image acquisition time needed for virtual staining of a label-free whole-slide image, alongside a ~89% decrease in the autofocusing time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.