Nanoimprint lithography manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of widediameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity.
In this paper, we review the progress and status of the FPA-1100NR2 mask replication system and also discuss the methods used on wafer imprint systems to extend the life of a replica mask. Criteria that are crucial to the success of a replication platform include image placement (IP) accuracy and critical dimension uniformity (CDU). Data is presented on both of these subjects. With respect to image placement, an IP accuracy (after removing correctables) of 0.8nm in X, 1.0nm in Y has been demonstrated. Particle adders were studied by cycling the tool for more than 16000 times and measuring particle adders. Additionally, new methods, including on-tool wafer inspection and in-situ mask cleaning are being studied to further extend the replica mask life.
Nanoimprint lithography manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of widediameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. In this paper, we review the advancements in both wafer imprinting and mask replication systems. To address high volume manufacturing concerns, an FPA-1200 NZ2C four station cluster tool is used in order to meet throughput and cost of ownership requirements (CoO). The status of the tool overlay is discussed. Application of a High Order Distortion Correction system to the existing magnification actuator has enabled correction of high order distortion terms up to K20. Because mask replication is required for nanoimprint lithography, improvements to the FPA-1100 NR2 mask replication system are reviewed. Criteria that are crucial to the success of a replication platform include both particle control and image placement (IP) accuracy. Data is presented on both of these subjects. Particle adders were studied over a nine month period. Additionally, with respect to image placement, an IP accuracy (after removing correctables) of 1.0nm in X, 1.1nm in Y has been demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.