Directly modulated 850nm oxide VCSEL is a key enabling technology for short reach, high speed
data-communication applications. Current commercially available optical transceiver products operate at data rate
up to 10Gb/s per channel, for aggregate data rate of 70Gb/s and beyond, in the case of parallel optical data link.
High volume, low cost, over temperature optical modulation speed, spectral width, output power, thermal power
budget, large signal electrical interaction with the IC driver, and reliability are some of the key requirements
driving the 850nm oxide VCSEL development. In this paper, we discuss some of the engineering issues
investigated for developing a viable oxide VCSEL product operating at 10Gb/s per channel and higher data rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.