We outline the two workflows used for the reduction of science data from the MCAO Assisted Visible Imager and Spectrograph (MAVIS), and describe the inputs, outputs, and static calibration files required for each process of the workflows. Ronchi masks and pinhole masks are used in combination to determine the geometry of the spectrograph slices, and wavelength calibrations will be enhanced with Etalons. The precision required for the Imager astrometry is obtained by the mid-spatial frequency distortion calibrations. To prototype these complex methods and to test the efficacy of pixel tables and error handling we are using the new ESO PyCPL and PyHDRL libraries, which provide an interface to ESO’s classic Common Pipeline Library (CPL) in the Python ecosystem.
The data reduction software for the Gemini High Resolution Optical SpecTrograph (GHOST) presents a number of unusual challenges. Star light from one or two objects and simultaneous sky is collected in integral field units rather than a slit or well-separated fibers. When used with binning, individual fibers are not resolved, and the optimal pixel weighting is derived from a simultaneous slit viewing camera. We describe the data reduction approach taken, including testing using an optical physics-based data simulator, and an object-oriented and modular approach to spectral extraction that fits within the Gemini recipe system, DRAGONS, using AstroConda.
The Giant Magellan Telescope (GMT) Integral-Field Spectrograph (GMTIFS)c is one of six potential first-light
instruments for the 25m-diameter Giant Magellan Telescope. The Australian National University has completed a
Conceptual Design Study for GMTIFS. The science cases for GMTIFS are summarized, and the instrument capabilities
and design challenges are described. GMTIFS will be the work-horse adaptive-optics instrument for GMT. It contains an
integral-field spectrograph (IFS) and Imager accessing the science field, and an On-Instrument Wave-Front Sensor
(OIWFS) that patrols the 90 arcsec radius guide field. GMTIFS will address a wide range of science from epoch of
reionization studies to forming galaxies at high redshifts and star and planet formation in our Galaxy. It will fully exploit
the Laser Tomography Adaptive Optics (LTAO) system on the telescope. The tight image quality and positioning
stability requirements that this imposes drive the design complexity. Some cryogenic mechanisms in the IFS must set to
~ 1 μm precision. The Beam-Steering mechanism in the OIWFS must set to milli-arcsecond precision over the guide
field, corresponding to ~ 1 μm precision in the f/8 focal plane. Differential atmospheric dispersion must also be corrected
to milli-arcsecond precision. Conceptual design solutions addressing these and other issues are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.