Direct solar illumination disappears in the umbra when the Moon’s shadow creates a total solar eclipse. However, the sky above an observer in the umbra is not completely dark because of light that scatters into the umbra from the penumbra (partial eclipse region) and beyond. We show that a simple 2nd -order scattering model reproduces the brightness and color within a factor of 2 relative to measurements made with a radiometrically calibrated all-sky imaging system at the total solar eclipse of 21 August 2017 observed in Rexburg, Idaho USA. The model includes a first scattering point outside the umbra and a 2nd scattering point at the center of the umbra that redirects the light downward to the observer. The simulations show that the primary zenith skylight at the center of the umbra arises from light whose first scattering point is near an altitude of 10 km, the first scattering creates an orangish ring of light symmetrically around the horizon up to approximately 10° elevation, and the second scattering creates zenith skylight that is reduced by approximately four orders of magnitude from daylight and that has a slightly higher blue-red ratio than the daylight before and after the eclipse.
With increasing threats to satellites and signal denial methods becoming cheap and effective, GPS failure is a reality and critical risk for navigation, localization, and targeting applications. Inspired by nature, the SkyPASS polarimeter developed by Polaris Sensor Technologies exploits the atmospheric polarization pattern to find highly accurate heading in situations when a typical sun/star sensor would fail to operate. It provides improved availability under cloud cover, under canopy, in urban environments, in civil and nautical twilight, and during sunrise and sunset. Unpolarized sunlight (or moonlight) becomes partially polarized when scattered by atmospheric molecules. Rayleigh scattering creates a polarization pattern, or map, that is unique, depending upon the date, time, and the position of the observer. This natural phenomenon is the scientific basis for SkyPASS operation, and it can be predicted to first order using Rayleigh scattering theory. This paper provides an overview of the SkyPASS polarimeter design, the method to calculate heading from sky polarization information, and the performance of the polarimeter in different environments. The third generation of SkyPASS processes data in real-time and has small enough SWaP to fit almost any platform.
Cloud thermodynamic phase (CTP) classification is a vital piece of information for determining how clouds affect climate and electromagnetic wave propagation. We describe a passive shortwave infrared (SWIR) three-channel polarimeter for CTP remote sensing. This instrument adds polarimetric sensitivity to the traditional radiance ratio method that capitalizes on the difference in spectral absorption between liquid water and ice. The ground-based polarimeter was used to measure the first three Stokes parameters in three SWIR spectral bands alongside a dual-polarization lidar system for validation. Additionally, we operated the polarimeter in division-of-time and division-of-aperture modes to explore the severity of polarization artifacts that arose from fast-moving clouds. Although temporal smearing of polarization signatures was identified, the impacts were found to be minimal. Using a surface fitting technique, the radiance ratio method was directly compared with a method that combined radiance ratios with the S1 Stokes parameter. We found that the addition of polarimetry improved cloud phase classification ability from ∼73 % to 95%.
Knowing the thermodynamic phase of a cloud–whether it is composed of spherical water droplets or polyhedral ice crystals–is critical in remote sensing applications and in climate studies. Liquid water and ice have different absorptive properties in certain spectral bands that can be exploited to identify the phase of clouds using ground-based, passive remote sensing. Our simulations found that ground-based radiance measurements at three spectral channels (1.55, 1.64, and 1.70 μm) provide improved discrimination when analyzed in three spectral dimensions as opposed to previous approaches based in two-dimensional parameter space. Our simulations show that these bands provide good discrimination between liquid-water and ice clouds when the optical depth is large. We also show measurements from a ground-based spectrometer confirming the cloud-phase sensing ability of these three channels, with validation provided by a dual-polarization lidar system.
The sky polarization pattern during solar eclipse totality shifts from the usual daytime clear-sky pattern, with maximum polarization in an arc located 90° from the Sun, to one with maximum polarization slightly above the horizon in a ring nominally concentric about the zenith. A sequence of 9 visible-wavelength all-sky images are shown throughout totality for the 21 August 2017 solar eclipse from a site near Rexburg, ID USA (43.8294°N, 111.8849°W). A neutral region appeared in the southwest quadrant of the all-sky images, directly opposite the eclipsed Sun, and evolved in size and radial position throughout the 2 min 17 s of totality.
Determining whether a cloud is composed of spherical water droplets of polyhedral ice crystals (i.e., the thermodynamic phase) from a passive remote sensing instrument is very difficult because of the immense variety of clouds and their highly variable microphysical properties. To improve upon the popular method of radiance ratios, we enhance the classification ability by adding polarimetric sensitivity to an instrument that measures radiance in three short-wave infrared bands. Clouds typically induce a polarization signature on the order of a percent, and so sensitive optics are required for accurate classification. In this paper, we present the combination of spectral and polarimetric sensitivity for cloud thermodynamic phase classification using data from a ground-based, 3-band, short-wave infrared polarimeter and cloud-phase validation from a dual-polarization lidar. We then analyze the classification quality of various methods using surface-fitting techniques to show that the addition of polarimetry is advantageous for cloud classification.
Sunlight becomes partially linearly polarized when scattered from atmospheric gas molecules and can be quantified using the linear Stokes parameters S0 , S1 , S2 and the derived degree of linear polarization and angle of polarization (AoP). The angle-dependent Stokes parameters S1 and S2 and the AoP require a reference plane. Commonly used reference planes for polarimetric applications include the instrument, scattering, and solar principal planes, each of which provides unique insights when analyzing sky polarization data. Methods to transform the parameters between each frame of reference are known; however, previous publications have not shown the results of transforming a time series of all-sky polarization images into these different reference planes clearly showing how this alters the image visualization. We review two methods used to rotate all-sky polarization images from the instrument to the scattering plane and the solar principal plane, and for the first time shows all-sky polarization image sequences recorded from sunrise to sunset of Stokes S1 and S2 and AoP for each reference frame.
Knowing the thermodynamic phase of a cloud–whether it is composed of spherical water droplets or polyhedral ice crystals–is critical in remote sensing applications and in climate studies. We recently showed that we can determine cloud phase with visible-wavelength sky polarimetry, and in this presentation we extend that method to shortwave infrared wavelength bands near 1.6 microns. We describe the instrument, a passive, three-channel polarimeter with spectral bands at 1550 nm, 1640 nm, and 1700 nm with approximate width of 40 nm and how we are using it in experiments to discriminate between liquid-water and ice clouds. This portable polarimeter measures scattered sunlight using polarizers orientated at 0° , 45‡ , and 90° with respect to the solar vertical scattering plane. It has a 4.9° field-of-view and a motorized, computer-controlled pan-and-tilt mount that controls the positioning of the polarimeter so that it can measure any point in the sky.
On 21 August 2017 we measured skylight polarization during a total solar eclipse in Rexburg, Idaho, using two all-sky polarimetric imagers. The all-sky polarization images were recorded using three simultaneously operating digital singlelens-reflex (DSLR) cameras with good low-light sensitivity. Each camera was equipped with a 180° field-of-view fisheye lens to view the entire sky and each lens contained a fixed linear polarizer orientated at 0° , 60° , and 120° , respectively, to recover the first three Stokes parameters. Skylight polarization was measured from sunrise to sunset in the cameras’ blue, green, and red channels. Before and after totality, the maximum sky polarization occurred in its usual pattern with a band of maximum polarization positioned 90° from the sun. However, during totality skylight polarization became nominally symmetric about the zenith. This was observed clearly in the blue and green channels and less obviously in the red channel, which had a greatly diminished signal. At and near the observation site, we also operated an infrared cloud imager, a hand-held spectrometer to measure surface reflectance, and an AERONET solar radiometer to characterize the atmospheric aerosols. This ancillary data set provided a complete characterization of the conditions of the surrounding atmosphere and underlying surfaces.
A solar eclipse provides a rare opportunity to observe skylight polarization during conditions that are fundamentally different than what we see every day. On 21 August 2017 we will measure the skylight polarization during a total solar eclipse in Rexburg, Idaho, USA. Previous research has shown that during totality the sky polarization pattern is altered significantly to become nominally symmetric about the zenith. However, there are still questions remaining about the details of how surface reflectance near the eclipse observation site and optical properties of aerosols in the atmosphere influence the totality sky polarization pattern. We will study how skylight polarization in a solar eclipse changes through each phase and how surface and atmospheric features affect the measured polarization signatures. To accomplish this, fully characterizing the cameras and fisheye lenses is critical. This paper reports measurements that include finding the camera sensitivity and its relationship to the required short exposure times, measuring the camera’s spectral response function, mapping the angles of each camera pixel with the fisheye lens, and taking test measurements during daytime and twilight conditions. The daytime polarimetric images were compared to images from an existing all-sky polarization imager and a polarimetric radiative transfer model.
Getting students interested in science, specifically in optics and photonics, is a worthwhile challenge. We developed and implemented an outreach campaign that sought to engage high school students in the science of polarized light. We traveled to Montana high schools and presented on the physics of light, the ways that it becomes polarized, how polarization is useful, and how to take pictures with linear polarizers to see polarization. Students took pictures that showed polarization in either a natural setting or a contrived scene. We visited 13 high schools, and presented live to approximately 450 students.
At any given time, clouds cover approximately 60% of the Earth’s surface and they strongly influence weather and climate; however, they are one of the largest sources of uncertainty in climate models and predictions of atmospheric effects on remote sensing measurements. Knowing the cloud thermodynamic phase – whether a cloud is composed of ice crystals or liquid particles – is critical in these applications. Knobelspiesse et al. (Atmos. Meas. Tech., 8, 1537–1554, 2015) showed theoretically that the sign of the S1 Stokes parameter can be used to detect cloud thermodynamic phase when observed with a ground-based passive polarimeter and demonstrated this principle with a zenith-viewing polarimeter. In this theory, a positive S1 value indicates a liquid cloud, while a negative S1 value indicates an ice cloud. In this paper, we report the use of our all-sky polarimeter, operating at 450 nm (10 nm band) to detect ice, liquid, and multi-layered clouds. The cloud thermodynamic phase was independently verified with a dual-polarization lidar pointed at the zenith.
Polarization can be used to detect manmade objects on the ground and in the air, as it provides additional information beyond intensity and color. Skylight can be strongly polarized, so the detection of airplanes in flight requires careful consideration of the skylight degree and angle of polarization (DoLP, AoP). In this study, we detect poorly resolved airplanes (≥ 4 pixels on target) in flight during daytime partly cloudy and smoky conditions in Bozeman, Montana. We used a Polaris Sensor Technologies SWIR-MWIR rotating imaging polarimeter to measure the polarization signatures of airplanes and the surrounding skylight from 1.5 to 1.8 μm in the short-wave infrared (SWIR). An airplane flying in a clear region of partly cloudy sky was found to be 69% polarized at an elevation angle of 13° with respect to the horizon and the surrounding skylight was 4-8% polarized (maximum skylight DoLP was found to be 7-14% at an elevation angle of 50°). As the airplane increased in altitude, the DoLP for both airplane and surrounding sky pixels increased as the airplane neared the band of maximum sky polarization. We also observed that an airplane can be less polarized than its surrounding skylight when there is heavy smoke present. In such a case, the airplane was 30-38% polarized at an elevation angle of 17°, while the surrounding skylight was approximately 40% polarized (maximum skylight DoLP was 40-55% at an elevation angle of 34°). In both situations the airplane was most consistently observed in DoLP images rather than S0 or AoP images. In this paper, we describe the results in detail and discuss how this phenomenology could detect barely resolved aircrafts.
Knowledge of the polarization state of natural skylight is important to growing applications using polarimetric sensing. We previously published measurements and simulations illustrating the complex interaction between atmospheric and surface properties in determining the spectrum of skylight polarization from the visible to near-infrared (1 μm).1 Those results showed that skylight polarization can trend upward or downward, or even have unusual spectral discontinuities that arise because of sharp features in the underlying surface reflectance. The specific spectrum observed in a given case depended strongly on atmospheric and surface properties that varied with wavelength. In the previous study, the model was fed with actual measurements of highly variable aerosol and surface properties from locations around the world. Results, however, were limited to wavelengths below 1 μm from a lack in available satellite surface reflectance data at longer wavelengths. We now report measurement-driven simulations of skylight polarization from 350 nm to 2500 nm in the short-wave infrared (SWIR) using hand-held spectrometer measurements of spectral surface reflectance. The SWIR degree of linear polarization was found to be highly dependent on the aerosol size distribution and on the resulting relationship between the aerosol and Rayleigh optical depths. Unique polarization features in the modeled results were attributed to the surface reflectance and the skylight DoLP generally decreased as surface reflectance increased.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.