Recent advances in the field of tissue engineering have led to the development of complex three-dimensional tissue constructs. It has become clear, however, that the traditional tools used for studying standard cell cultures are not always adequate for diagnostically studying thick, highly-scattering cultured tissues. Furthermore, many techniques used for studying three-dimensional constructs are invasive or require exogenous fluorophores, which damage the tissue and prevent time-course studies of tissue development. An integrated optical coherence tomography (OCT) and multi-photon microscope (MPM) has been constructed for visualizing 3-D engineered tissues. OCT was used for imaging structure and cell organization, while MPM was used for assessing functional properties of cells. We demonstrate technical developments involved in the construction of this instrument and its use in the non-destructive investigation of cell movement and tissue organization in engineered tissues. Cells labeled with GFP and exogenous fluorescent probes have also been imaged with OCT and confocal microscopy. Studies indicate that an integrated microscope has the potential to be an enabling diagnostic tool for future studies in the growth and organization of engineering tissues and in cell-cell and cell-matrix interactions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.