An original experimental setup for shearography with metrological applications is presented herein. The
simplicity and the efficiency of the setup are provided by a shearing device, a prism that separates the TE and TM
polarization modes with a coating and a thin glass plate attached on its face. The temporal phase shifting method is
applied through the use of a liquid crystal variable retarder. The use of this shearing device enables an in-line and almostcommon
path configuration for the shearing interferometer, a path that leads to high stability of the interferometer and a
low sensitivity to external disturbances. In order to prove the efficiency and the accuracy of this speckle shearing
interferometer, the out-of-plane displacement derivative relative to the shearing interferometry direction of a centrally
loaded steel plate has been measured by the shearographic interferometer and then compared with the out-of-plane
displacement derivative computed from the displacement field provided by the finite element method. The results are in
good agreement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.