An active contour model (ACM) based on grayscale morphology fitting energy for fast image segmentation in the presence of intensity inhomogeneity is proposed. The core idea of grayscale morphology fitting energy is using the grayscale erosion and dilation operations to fit the image intensities on the two sides of contours. By extracting local intensity information using morphological operators, the proposed model can effectively segment images with intensity inhomogeneity, and the computational cost is low because the grayscale morphology fitting functions do not need to be updated during the process of curve evolution. Experiments on synthetic and real images have shown that the proposed model can achieve accurate segmentation. In addition, it is more robust to the choice of initial contour and has a higher segmentation efficiency compared to traditional local fitting-based ACMs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.