The Adaptive SAR ATR Problem Set (AdaptSAPS) poses a typical "learning with a critic" problem, in which the system-under-test (SUT) is initially trained to characterize a subset of target objects (e.g. T72) and a subset of non-target objects (e.g. clutter), and is to be updated on-line using the Target Truth information. This work proposes an SUT for adaptive SAR imagery exploitation. The system is founded on a novel feature vector generation scheme and Linear Discriminant Analysis (LDA). The proposed feature vector generation scheme partitions SAR image chips into subimage blocks. The distribution density of subimage blocks is fitted as a Gaussian Mixture Model (GMM). Feature vector of each SAR image is composed of log-likelihoods of its subimage blocks on the pre-fitted GMM. Comparing to original SAR image chips, feature vectors generated from log-likelihoods display superior discriminative power. After feature generation, LDA is used to project feature vectors into a 1-dimensional subspace for classification. The performance of the proposed system is evaluated on the AdaptSAPS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.