Mid-infrared conventional solitons and soliton molecules are generated in a polarization-maintaining erbium-doped fluoride fiber oscillator, where a semiconductor saturable absorber is used as the mode locker and a polarization beam splitter is employed for getting linearly polarized output pulses. By rotating the half-wave plate in front of the polarization beam splitter to change the output coupling ratio, the system is switchable between conventional solitons and soliton molecules. conventional solitons with a pulse duration of 120 ps, a maximum average power of 248 mW, and a repetition rate of 44.5 MHz are obtained when the oscillator operates in the single-pulse mode-locked state. By decreasing the output coupling ratio, the operating regime of the oscillator switches to the soliton-molecule mode-locked state, in which soliton-triplets equally distributed at a repetition rate of 44.5 MHz with a signal-to-noise ratio of 78 dB and a temporal separation of 60 ps are obtained. Our work offers a scheme to realize switchable operations between the conventional soliton and the soliton molecule in the mid-infrared polarization-maintaining mode-locked fiber laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.