KEYWORDS: Image resolution, Facial recognition systems, 3D modeling, Head, Super resolution, Cameras, 3D image processing, Surveillance, Eye models, 3D acquisition
Faces often appear very small and oriented in surveillance videos because of the need of wide fields of view and typically a large distance between the cameras and the scene. Both low resolution and side-view faces make tasks such as face recognition difficult. As a result, face hallucination or super-resolution techniques of face images are generally needed, which has become a thriving research field. However, most existing methods assume face images have been well aligned into some canonical form (i.e. frontal, symmetric). Therefore, face alignment, especially for low-resolution face images, is a key and first step to the success of many face applications. In this paper, we propose an auto alignment approach for face images at different resolution, which consist of two fundamental steps: 1) To find the locations of facial landmarks or feature points (i.e. eyes, nose, and etc.) even for very low resolution faces; 2) To estimate and correct head poses based on the landmark locations and a 3D reference face model. The effectiveness of this method is shown by the aligned face images and the improved face recognition score on released data sets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.