KEYWORDS: Molecules, Metals, Quenching, Fluorescence, Fluorescence resonance energy transfer, Resonance energy transfer, Film thickness, Energy transfer, Dielectrics, Molecular energy transfer
We present an analytical model for Förster resonance energy transfer between donors and acceptors in the presence of a metal surface. We find that energy transfer to the metal results in a reduction of the Förster radius, leading to a suppression of concentration quenching for high molecule concentrations.
We have studied the effects of planar, lamellar, and random nanostructured metal-dielectric environments on spontaneous emission and energy transfer concentration quenching of HITC laser dye. We found an inhibition of the concentration quenching in vicinity of metal, which was stronger in nanostructured substrates than in plain geometries. It was shown that the same substrates, which boosted spontaneous emission, also inhibited the concentration quenching. The effect is discussed in terms of the Förster radius affected by losses.
Work at LLNL was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.