Silicon photonics is the emerging optical interconnect technology where integrated nanophotonic components allow reaching high device density and improved optical functionalities. One key component is the optical microresonator. A particular kind of microresonator is the racetrack resonator where straight waveguide sections are used to achieve a large value of the coupling coefficient with a bus waveguide for any light polarization state. It is our aim to study the performances of racetrack resonators fabricated on silicon on insulator via CMOS processing. We experimentally investigated different multiple resonator designs where box-shaped filter characteristic, Vernier effect, and coupled resonator induced transparency effects are obtained. We demonstrate that racetrack resonators are instrumental to several different functions in nanophotonics and that the actual lithographic process is fully capable of building these structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.