This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this work, the fabrication of europium-doped Lu2O3 transparent ceramics is presented. First, a powder precursor was prepared using a reverse co-precipitation and characterized utilizing X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Powder was then compacted into dense transparent ceramics by spark-plasmasintering. Photoluminescence, radioluminescence and transmittance spectra, as well as scanning electron microscopy pictures, of sintered Eu:Lu2O3 samples are presented.
InGaN/GaN multiple QW structures described here were prepared by metal-organic vapour phase epitaxy and characterized by high resolution X-ray diffraction measurements. We demonstrate structure suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft X-ray source in extended dynamical and time scales. The photo-, radio- and cathodo-luminescence (PL, RL, CL) were measured. We observed double peak luminescence governed by different recombination mechanisms: i) exciton in QW and ii) related to defects. We have shown that for obtaining fast and intensive luminescence response proper structure design is required. The radioluminescence decay time of QW exciton maximum decreased 4 times from 16 ns to 4 ns when the QW thickness was decreased from 2.4 nm to 2 nm. We have proved suitability of InGaN/GaN structures for fast scintillator application for electron or other particle radiation detection. For x-ray detection the fast scintillation response would be hard to achieve due to the dominant slow defect luminescence maximum.
View contact details
No SPIE Account? Create one