Early-stage detection of Coronavirus Disease 2019 (COVID-19) is crucial for patient medical attention. Since lungs are the most affected organs, monitoring them constantly is an effective way to observe sickness evolution. The most common technique for lung-imaging and evaluation is Computed Tomography (CT). However, its costs and effects over human health has made Lung Ultrasound (LUS) a good alternative. LUS does not expose the patient to radiation and minimizes the risk of contamination. Also, there is evidence of a relation between different artifacts on LUS and lung’s diseases coming from the pleura, whose abnormalities are related with most acute respiratory disorders. However, LUS often requires an expert clinical interpretation that may increase diagnosis time or decrease diagnosis performance. This paper describes and compares machine learning classification methods namely Naive Bayes (NB) Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) and Random Forest (RF) over several LUS images. They obtain a classification between lung images with COVID-19, pneumonia, and healthy patients, using image’s features previously extracted from Gray Level CoOccurrence Matrix (GLCM) and histogram’s statistics. Furthermore, this paper compares the above classic methods with different Convolutional Neural Networks (CNN) that classifies the images in order to identify these lung’s diseases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.