The localization of structural defects is of great interest in structure health monitoring (SHM). While acoustic emission signals are collected in the practice of SHM, the acquired waveforms inevitably include direct wave as well as reflection and reverberation waveforms. The direct wave actually contains more straightforward information in localizing the sources, so in this work, a deep recurrent denoising autoencoder (DRDA) network is developed. In general, waveform signals are highly correlated at different timescales, so temporally recurrent connections are added to the network structure, which have the memory of recent inputs. Consequently, the proposed DRDA model captures the dependencies across data points, while carrying out denoisng process, and combines the advantages of denoising autoencoders and recurrent neural networks. As the output of the proposed DRDA, direct waveforms are extracted and validated through finite element simulations. A contrived structure with nontrivial shape is excited by simulated pencil break excitations under the ABAQUS environment, then the simulated responses provide training data for the DRDA. The proposed algorithm is effective in filtering the reflected wave and outperforms the conventional denoising autoencoders.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.