The SAGE IV (Stratospheric Aerosol and Gas Experiment) Pathfinder looks towards ushering in the next generation of the SAGE family of instruments, leveraging solar occultation to retrieve vertical profiles of aerosols and gases in the stratosphere, providing high precision calibration data for other instruments. A development funded through the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) SAGE IV Pathfinder is designed to extend the data record from the SAGE III scanning grating spectrometer with a multispectral imaging approach. Solar disk imaging improves the data collected by providing: (1) absolute pointing information; (2) measurements of atmospheric refraction effects; and (3) measurements of solar disk anisotropy. This additional information relaxes traditionally tight constraints on attitude knowledge, stability, and pointing control making a free-flying 6U CubeSat instrument feasible. Early estimates show this approach might reduce the cost of SAGE continuity missions by as much as 90%. A key benefit of the SAGE IV Pathfinder design to future missions is the versatility of the resultant telescope subsystem. The F/5.25 telescope resulted in <90% encircled energy within a 30 μm/28 arcsecond pixel and point source normalized irradiance transmittance (PSNIT) of <1E-4 0.5° outside of the field of view (FOV). The baseline design can be adapted to accommodate changes to layout, aperture, focal lengths, filters, and/or detectors in various CubeSat form factors. The telescope was designed to be thermally agnostic, with STOP analysis results indicating negligible performance variation as thermal gradients fluctuate on orbit. Once thermal validation of STOP analysis is completed, proven micron-level alignment, mounting, and analyses can then be leveraged for new high performance, semi-custom instruments, saving significant development cost for future science missions.
The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Airborne flight campaigns have been used to demonstrate ACES’ advanced technologies critical for a spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. ACES recently flew on the NASA DC-8 aircraft during the 2017 NASA ASCENDS/Arctic-Boreal Vulnerability Experiment (ABoVE) airborne measurement campaign to test ASCENDS-related technologies in the challenging Arctic environment. Data were collected over a wide variety of surface reflectivities, terrain, and atmospheric conditions during the campaign’s eight research flights. ACES also flew during the 2017 and 2018 Atmospheric Carbon and Transport – America (ACT-America) Earth Venture Suborbital - 2 (EVS-2) campaigns along with the primary ACT-America CO2 lidar, Harris Corporation’s Multi-Frequency Fiber Laser Lidar (MFLL). Regional CO2 distributions of the lower atmosphere were observed from the C-130 aircraft during the ACT-America campaigns in support of ACT-America’s science objectives. The airborne lidars provide unique remote data that complement data from more traditional in situ sensors. This presentation shows the applications of CO2 lidars in meeting these science needs from airborne platforms and an eventual spacecraft.
Atmospheric carbon dioxide (CO2) is one of the major greenhouse gases in the Earth’s climate system. The CO2 concentration in the atmosphere has been significantly increased over the last 150 years, due mainly to anthropogenic activities. Comprehensive measurements of global atmospheric CO2 distributions are urgently needed to develop a more complete understanding of CO2 sources and sinks. Because of the importance of the atmospheric CO2 measurements, satellite missions with passive sensors such as GOSAT and OCO-2 have been launched, and those with active sensors like Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) using an integrated path differential absorption (IPDA) lidar are being studied. The required accuracy and precision for the column-integrated CO2 mixing ratios (XCO2) is high, within 1.0 ppm or approximately 0.26%, which calls for unbiased CO2 measurements and accurate determinations of the path length. The presence of clouds and aerosols can make the measurement complicated, especially for passive instruments. The heterogeneity generated by the surface elevation changes within the field of view of the sensors and the grid boxes of averaged values of atmospheric CO2 would also cause significant uncertainties in XCO2 estimates if the path length is not accurately known. Thus, it is required to study the cloud and aerosol distributions as well as the surface elevation variability in assessing the performance of the CO2 measurements from both active and passive instruments.
The CALIPSO lidar has acquired nearly 10 years of global measurement data. It provides a great opportunity to study the global distribution of clouds and aerosols as well as the statistics of the surface elevation variations. In this study we have analyzed multiple years of the CALIPSO Level 2 data to derive the global occurrence of aerosols and optically thin clouds. The results show that clear sky does not occur as frequently as expected. The global average occurrence is only about 8% for very clean air with columnar OD at 532 nm < 0.01. It increases to ~29% when OD < 0.1, and ~42% when OD < 0.3, which is close the clear atmospheric threshold from regular passive remote sensing instruments. This calls for a capability to make precise retrievals in the presence of relatively dense aerosols or thin clouds.
Multiple years of surface elevation data derived from the CALIPSO lidar has also been used in the assessment of surface elevation variability for passive sensor observations. It is shown that the variability of the surface elevation generally increases with increases in footprint size and surface elevation. For a footprint of 1-2 km typical for passive sensors, the mean standard deviation is 5-10 meters when elevation < 1 km and can reach 100 meters as the elevation increases. The occurrence frequency for a standard deviation < 10 m is greater than 20%, which can cause significant biases in the CO2 retrieval if the presence of the cloud and/or aerosol cannot be identified and corrected.
With ranging capability, the ASCENDS lidar system supported by NASA will reliably measure CO2 even in the presence of multiple backscatter targets (surface and transparent clouds) as shown during the experiments of recent airborne system demonstrations. However, it is very challenging for passive satellites to make reliable retrievals in the multiple-layer target case, because of the lack of path length information.
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
This work describes the design and testing of a highly-tunable differential absorption lidar (DIAL) instrument utilizing an all-semiconductor transmitter. This new DIAL instrument transmitter has a highly-tunable external cavity diode laser (ECDL) as a seed laser source for two cascaded commercial tapered amplifiers. The transmitter has the capability of tuning over a range of ~ 17 nm centered at about 832 nm to selectively probe several water vapor absorption lines. This capability has been requested in other recent DIAL experiments for wavelengths near 830 nm. The transmitter produces pulse energies of approximately 0.25 µJ at a repetition rate of 20 kHz. The linewidth is exceptionally narrow at <0.3 MHz, with frequency stability that has been shown to be +/- 88 MHz and spectral purity of 0.995. Tests of the DIAL instrument to prove the validity of its measurements were undertaken. Preliminary water vapor profiles, taken in Bozeman, Montana, agree to within 5-60% with profiles derived from co-located radiosondes 800 meters above ground altitude. Below 800 meters, the measurements are biased low due to a number of systematic issues that are discussed. The long averaging times required by low-power systems have been shown to lead to biases in data, and indeed, our results showed strong disagreements on nights when the atmosphere was changing rapidly, such as on windy nights or when a storm system was entering the area. Improvements to the system to correct the major systematic biases are described.
It is widely agreed that water vapor is one of the most important gasses in the atmosphere with regards to its role in local weather, global climate, and the water cycle. Especially with the growing concern for understanding and predicting global climate change, detailed data of water vapor distribution and flux and related feedback mechanisms in the lowest 3 km of the troposphere, where most of the atmospheric water vapor resides, are required to aid in climate models. Improved capabilities to monitor range-resolved tropospheric water vapor profiles continuously in time at many locations are needed. One method of obtaining this data in the boundary layer with improved vertical resolution relative to passive remote sensors is with a Differential Absorption LIDAR (DIAL) utilizing a compact laser diode source. Montana State University, with the expertise of its laser source development group, has developed a compact water vapor DIAL system that utilizes a widely tunable amplified external cavity diode laser (ECDL) transmitter. This transmitter has the ability to tune across a 17 nm spectrum near 830 nm, allowing it access to multiple water vapor absorption lines of varying strengths. A novel tuning system tunes and holds the ECDL to within +/- 88 MHz (0.20 pm) of the selected wavelength. The ECDL acts as a seed source for two commercial cascaded tapered amplifiers. The receiver uses commercially available optics and a fiber-coupled Avalanche Photodiode (APD) detector. Initial nighttime measurements of water vapor profiles taken over Bozeman, Montana, with comparisons to radiosonde-derived profiles will be presented.
Recent advances using electronic feedback to control the optical cavity length of external cavity diode lasers (ECDLs) have led to extended continuous tuning ranges. Mode-hop-free tuning over more than 65 GHz has been demonstrated. The ability to tune ECDLs asross a wide range is particularly useful to differential absorption lidar (DIAL) systems that use ECDLs as seed laser sources. Experiments using a multiple-pass gas absorption cell are performed to test a widely tunable, amplified ECDL DIAL transmitter with this extended tuning range system. Experimental results show that the system can be tuned to and maintained at a user-defined wavelength for one hour, then tuned to and maintained at a second user-defined wavelength for one hour without mode hopping. This tuning is successfully accomplished between wavelengths separated by approximately 44 GHz. A computer-controlled feedback loop in the tuning system tunes and holds the laser system to the on- and off-line wavelengths to within ±88 MHz. The laser power transmitted through the gas absorption cell is monitored and used to perform a differential absorption calculation to find the number density of water vapor molecules within the cell. The measured value is in agreement with a HiTRAN prediction of the expected value.
We have developed and demonstrated both Ytterbium-doped and Erbium-doped, diode-pumped and seeded, fiber amplifiers at 1064 and 1570 nm, respectively. By pulse pumping a one-stage Erbium amplifier, we have shown greater than 20 W peak output power and high wall-plug efficiency. Our pulse-pumping approach improves energy efficiency up to 80% (at 1 kHz PRF) over the identical CW pumping scheme while suppressing amplified spontaneous emission (ASE). We report on the development of these rare-earth doped fiber amplifiers and the application of multi-stage fiber amplifiers to create a multi-spectral laser transmitter ideally suited for space and planetary lidar investigations.
Water vapor is one of the most significant constituents of the atmosphere because of its role in cloud formation, precipitation, and interactions with electromagnetic radiation, especially its absorption of longwave infrared radiation. Some details of the role of water vapor and related feedback mechanisms in the Earth system need to be characterized better if local weather, global climate, and the water cycle are to be understood. A Differential Absorption LIDAR (DIAL) with a compact laser diode source may be able to provide boundary-layer water vapor profiles with improved vertical resolution relative to passive remote sensors. While the tradeoff with small DIAL systems is lower vertical resolution relative to large LIDARs, the advantage is that DIAL systems can be built much smaller and more robust at less cost, and consequently are the more ideal choice for creating a multi-point array or satellite-borne system. This paper highlights the progress made at Montana State University towards a water vapor DIAL using a widely tunable amplified external cavity diode laser (ECDL) transmitter. The ECDL is configured in a Littman-Metcalf configuration and was built at Montana State University. It has a continuous wave (cw) output power of 20 mW, a center wavelength of 832 nm, a coarse tuning range of 17 nm, and a continuous tuning range greater than 20 GHz. The ECDL is used to injection seed a tapered amplifier with a cw output power of 500 mW. The spectral characteristics of the ECDL are transferred to the output of the tapered amplifier. The rest of the LIDAR uses commercially available telescopes, filter optics, and detectors. Initial cw and pulsed absorption measurements are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.