The choice of a staggered or coplanar geometry for organic thin-film transistors (TFT) has significant effects on the static and dynamic electronic properties of the transistors. Using two-port network analysis, we find that the parasitic capacitances and thus the unity current-gain (transit) frequencies are significantly more dependent on the gate-to-source overlap in the staggered TFTs than in coplanar TFTs, and that the transit frequency is higher overall when a coplanar geometry is implemented. We show that these differences are primarily attributed to the lower contact resistance in the coplanar TFTs (10 Ohm-cm) as well as smaller parasitic capacitances associated with the gate-to-contact overlaps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.