By using a compact duo of few-cycle Cr:ZnS lasers as a pump source and using optical rectification in ZGP crystal, we demonstrate high-resolution dual-comb spectroscopy in the long-wave infrared (LWIR) region. By recording a sequence of 1500 interferograms, we resolved the comb modes with the finesse exceeding 1000; LWIR spectra of several molecules including methanol, nitrous oxide, and ammonia were recorded in real time (1-10 sec) with 80-MHz (comb spacing) resolution with ~300,000 spectral points (comb modes), and the signal-to-noise ratio of ~100.
We present recent results on high energy, high repetition rate 2090 nm Ho:YAG laser system resonantly pumped by the radiation of efficient Tm-doped CW fiber lasers. The laser consists of a master oscillator power amplifier (MOPA) with two additional amplification stages. We demonstrate maximum energy of 120 mJ per pulse with a 15 ns pulse width at 500 Hz, corresponding to a peak power of 8 MW. The results presented in a wide 100-1000 Hz range of repetition rates.
We report an approach to generation of optical frequency combs in the spectral range 2 – 20 µm. The 2-cycle, multi-Watt laser at the repetition rate 80 MHz is based on a polycrystalline Cr:ZnS. The bandwidth of the super-octave ultrafast Cr:ZnS laser source at the central wavelength 2.4 µm is extended to the long-wave IR range (5 – 20 µm) via optical rectification in non-oxide nonlinear materials: GaSe, ZGP. The key advantages of Cr:ZnS frequency comb technology is high efficiency of optical-to-optical conversion from low-cost cw EDFL light to fs MIR pulses, and ultra-low timing jitter. These advantages, in turn, has allowed us to implement shoe-box-sized, light-weight, frequency combs that open new avenues in imaging, sensing, and spectroscopy. Our preliminary evaluations confirm the applicability of the developed sources for dual-comb spectroscopy.
KEYWORDS: Frequency combs, Long wavelength infrared, Spectroscopy, Molecular spectroscopy, Mode locking, Femtosecond phenomena, Mid-IR, Optical amplifiers, High power lasers, Synchrotrons
Femtosecond mid-IR and long wave IR lasers provide tremendous opportunities for imaging and sensing because they combine high spatial coherence of the laser beams (crucial for remote sensing), high temporal coherence of mode-locked oscillators (enabling dual comb spectroscopy in important molecular fingerprint region), and few-optical-cycle pulses (enabling IR sensing with high dynamic range via electric field sampling with low cost room temperature near-IR photodetectors). The development of such a sources (especially compact and field-deployable sources) is a challenging task that relies on the most advanced bulk laser technologies, new gain and nonlinear materials for a wide range of laser wavelengths. We present a viable route to the generation of power and energy scalable few-cycle pulse trains in the IR and describe the application of the developed sources for dual comb spectroscopy. The laser architecture is based on a combination of laser and nonlinear interactions in polycrystalline Cr:ZnS media that enables simultaneous amplification of ultrashort pulses, nonlinear pulse compression to 2-optical-cycle, and nonlinear broadening of pulses’ spectrum to an optical octave. Importantly, all of the necessary optical signals for stabilization of the frequency comb with the large lever arm are generated directly inside polycrystalline Cr:ZnS. This, in turn, has allowed us to implement robust and reliable shoe-box sized middle-IR frequency combs with ultra-low timing jitter of the pulse trains, broad instantaneous spectra, and Watt-level average power.
We report a technique for generation of ultra-broadband coherent femtosecond continua in the infrared. The laser architecture is based on the Cr:ZnS–GaSe and Cr:ZnS–ZGP tandem arrangements that enable simultaneous amplification of ultrashort middle IR pulses and augmentation of pulses’ spectrum via a chain of intrapulse three-wave mixings. The first part of the tandems is based on a single-pass polycrystalline Cr:ZnS amplifier, which is optically pumped by off-the-shelf continuous wave Er-doped fiber laser and outputs 2-cycle pulses with multi-Watt average power at 80 MHz repetition rate, at the central wavelength 2.5 μm. The second stage of the tandems comprises a GaSe or ZGP crystals configured for intrapulse difference frequency generation. The Cr:ZnS–GaSe tandem has allowed us to achieve multi-octave 2–20 μm continuum with 2 W power in the range 2–3 μm and power in excess of 20 mW in the important range 3–20 μm. On the other hand, Cr:ZnS–ZGP tandem features long-wave infrared (6–12 μm) output pulses with record braking sub-Watt power level. Last but not least, Cr:ZnS–GaSe and Cr:ZnS–ZGP IR sources have small footprints and are easily convertible to the optical frequency combs with low carrier-to-envelope timing jitter.
Kerr-lens mode locked lasers based on polycrystalline Cr:ZnS and Cr:ZnSe have come of age and, arguably, represent the most viable route for generation of ultra-short pulses in the range 2–3 μm. Developed designs of Kerr-lens mode locked oscillators feature high efficiency and provide access to few-cycle MIR pulses with Watt-level power in a very broad range of pulse repetition rates. However, currently available dispersive mirror coatings limit spectral coverage of these oscillators to below one octave hampering their conversion to frequency combs via frequency envelop offset frequency (fceo) control and stabilization. Supercontinuum (SC) generation using photonic waveguides is a promising approach for spectral broadening of pulsed coherent sources at low pulse energies and small footprint. Among many materials promising for this application stoichiomentric Si3N4 (SiN) holds a unique place due to its high nonlinearity, CMOS compatible fabrication process, and spectral coverage over visible-middle-infrared (MIR) range. In the current paper we experimentally demonstrate the generation of a supercontinuum spanning more than 1.5 octaves over 1.2-3.7 um range in a silicon nitride waveguide using sub-40-fs pulses at 2.35 um generated by 75 MHz Cr:ZnS laser. The coupling efficiency was about 16%, which corresponds to 0.56nJ pulse energy and 12.4 kW peak power. We also have observed that threshold for SC generation was about 50 mW of incident power that corresponds to 2.4KW peak power. The demonstrated coherent 1.5 octaves spanning bandwidth is ideal for self-referenced f-2f detection of the fceo. In addition, this represents a promising broadband coherent source for dual comb spectroscopy.
II-VI chalcogenides (e.g. ZnSe/S) doped with transition metal (TM) ions such as Cr, and Fe are arguably the materials of choice for fabrication of effective mid-IR gain media. TM:II-VI materials feature a favorable blend of laser spectroscopic parameters: a four-level energy structure, absence of excited state absorption, close to 100% quantum efficiency of fluorescence (for Cr doped II-VI media), broad mid-IR vibronic absorption and emission bands. This talk summarizes progress in fabrication of high quality Cr:ZnS/Se and Fe:ZnS/Se by cation vacancy and cation interstitial enhanced post growth thermal diffusion. We also describe recent breakthrough on recrystallization and effective doping of ZnS ceramics under hot isostatic pressing resulting in a large cm-scale monocrystalline domains formation and an increase of the Fe diffusion coefficient by three orders of magnitude.
We report recent advances in high-power Cr:ZnS/Se and Fe:ZnSe laser systems, enabling a wide range of tunability (1.8-5.0µm) with output power levels of up to 140 W near 2500 nm, 32 W at 2940 nm, and 35 W at 4300 nm with corresponding optical efficiencies of 62%, 29%, and 35%.
Current improvements of output characteristics of polycrystalline Cr:ZnS/Se oscillators in Kerr-Lens-Mode-Locked (KLM) regime are reported: up to 2 W output power at 75-1200 MHz repetition rate, up to 2 cycle pulse duration (16 fs) with efficiency of 20-25% with regards to Er-fiber laser pump power. The effects of efficient up-conversion of mid-IR fs pulses in the laser medium as well as supercontinuum generation are demonstrated.
Further extension of mid-IR spectral coverage to 3-8 m is demonstrated by Cr:ZnS KLM laser pumped degenerate (subharmonic) parametric oscillators (OPOs) based on based on quasi-phase matching in orientation-patterned gallium arsenide, and random phase matching in polycrystalline ZnSe.
II-VI binary and ternary chalcogenides (e.g. ZnS, ZnSe; CdZnTe, ) doped with transition metal (TM) ions such as Cr, and Fe are arguably the materials of choice for effective mid-IR lasers potentially covering 1.8-9 µm spectral range. This talk summarizes progress in Cr:ZnS/Se and Fe:ZnSe laser systems, enabling a wide range of tunability (1.8-5.0µm) with output power levels of up to 140 W, as well as Fe doped ternary chalcogenides with tunability potentially extended up to 9 um.
TM:II-VI media feature a unique combination of superb ultra-fast laser capabilities with high nonlinearity enabling exceptional output characteristics of polycrystalline Cr:ZnS/Se oscillators in Kerr-Lens-Mode-Locked (KLM) regime over 2-2.6 um and effective up and down conversion of fs pulses via random phase matching (RFM). Extension of mid-IR spectral coverage to 3-8 um is demonstrated by Cr:ZnS KLM laser pumped subharmonic parametric oscillators (OPOs) based on quasi-phase matching in OP-GaAs, and RFM in polycrystalline ZnSe.
Fe:II-VI semiconductors are complimentary to Cr doped compounds and 3-8 um KLM ultrafast oscillators based on Fe doped chalcogenides are feasible. Another important feature of Fe:II-VI media is excellent energy storage capability at 77-200K (~60 µs luminescence life time) enabling efficient Q-switched regime and high energy amplification of ns and ultrafast pulses.
One of the major problems in the development of CW, gain switched, Q-switched and KLM ultrafast Fe:II-VI lasers was the absence of convenient pump sources overlapping with absorption band (2.7-4.5 um) of Fe: gain media. Potential utilization of Quantum Cascade Lasers (QCL) as pump sources of Fe:II-VI lasers will be discussed in the form QCL-solid state laser hybrid platforms as well as Fe doped active layers integrated in QCL structures.
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length (~ 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
This paper summarizes recent improvements of output characteristics of polycrystalline Cr:ZnS/Se master oscillators in Kerr-Lens-Mode-Locked regime. We developed a flexible design of femtosecond polycrystalline Cr:ZnS and Cr:ZnSe lasers and amplifiers in the spectral range 2–3 μm. We obtained few-optical-cycle pulses with multi-Watt average power in very broad range of repetition rates 0.08–1.2 GHz. We also report on efficient nonlinear frequency conversion directly in the polycrystalline gain elements of ultra-fast lasers and amplifiers. In this work we also report on recent progress in spinning ring gain element technology and report to the best of our knowledge the highest output power of 9.2 W Fe:ZnSe laser operating in CW regime at 4150nm.
This paper summarizes recent improvements of output characteristics of polycrystalline Cr:ZnS/Se master oscillators in Kerr-Lens-Mode-Locked regime: 1.9 W average power at 41 fs pulse duration, 24 nJ pulse energy and 515 kW peak power with efficiency of 19% with regards to 1567 nm pump power from linearly polarized Er-fiber laser. A simple design of mid-IR fs Cr:ZnS MOPA enabled power scaling to 6.8 W at 79 MHz repetition rate. This was accompanied by a 2 fold spectral broadening to 600 nm at -10 dB level, pulse compression from 44 to <30 fs, and overall 25 % optical to optical efficiency. Improved dispersion management of the resonator enabled pulse duration of Cr:ZnS master oscillator approaching 2 optical cycles (<26 fs) and 500 nm (27 THz) bandwidth of the spectrum at half-maximum. Further improvements of the optical coatings will result in octave-spanning polycrystalline Cr2+:ZnS/ZnSe lasers. In this work we also report on recent progress in spinning ring gain element technology and show new unprecedented output power levels for Cr:ZnSe laser gain media: ~140 W at 2400-2500 nm spectral range and ~32 W at 2940-2950 nm in CW regime of operation. High gain of the spinning ring Cr:ZnSe power amplifier demonstrated in this work may potentially enable scaling up the femtosecond mid-IR Cr:ZnS MOPA up to 70-100W.
Cr2+ doped ZnS and ZnSe possess a unique blend of physical, spectroscopic, and technological parameters. These laser materials feature ultra-broadband gain in 1.9 – 3.3 μm mid-IR range, low saturation intensities, and large pump absorption coefficients. The II-VI semiconductor hosts provide a low phonon cut-off, broad IR transparency, and high second and third order nonlinearity. Cr:ZnS and Cr:ZnSe are available in polycrystalline form: the material consists of a multitude of microscopic single-crystal grains with a broad distribution of grain sizes and orientations, which results in random quasi-phase-matching (RQPM). The distinctive features of RQPM are a linear dependence of the conversion yield with length of the medium and ultra-wide bandwidth of three-wave mixing. We review resent experimental results on optically pumped mid-IR ultrafast lasers based on polycrystalline Cr:ZnS and Cr:ZnSe. We demonstrate that Kerrlens mode-locking of polycrystalline Cr:ZnS and Cr:ZnSe lasers allow for generation of few-cycle mid-IR pulses with MW-level peak power. This opens several avenues for efficient nonlinear frequency conversion of short optical pulses directly in the laser gain medium via RQPM process. We implemented Kerr-lens mode-locked Cr:ZnS oscillators, which feature high power (up to 0.25 W), spectrally broad (up to 22 THz) second harmonic generation (SHG) in the laser medium. We also demonstrate simple and robust ultrafast source based on single-pass continuously pumped polycrystalline Cr:ZnS laser amplifier: mid-IR pulses with 6.8 W average power and the spectrum spanning 2.0–2.6 μm as well as SHG pulses with 0.52 W average power and 1.05 – 1.25 μm spectral span were obtained.
Progress in fabrication and mid-IR lasing of Cr and Fe thermal-diffusion and radiation enhanced thermal diffusion doped II-VI binary and ternary polycrystals is reported. We demonstrate novel design of mid-IR Fe:ZnSe and Cr:ZnSe/S solid state lasers with significant improvement of output average power up to 35W@4.1 μm and 57W@2.5 μm and 20W@2.94 μm. We report significantly improved output characteristics of polycrystalline Cr:ZnS/Se lasers in gain-switched regime: 16 mJ at 200 Hz, pulse duration 5 ns with tunability over 2400-3000 nm as well as Kerr-Lens-Mode-Locked regime in terms of average power (up to 2 W), peak power and pulse energy (0.5 MW and 24 nJ, respectively), and pulse duration (less than 29 fs).
We report a novel design of CW Cr2+:ZnS/ZnSe laser systems and demonstrate record output powers of 27.5 W at 2.45 μm and 13.9 W at 2.94 μm with slope efficiencies of 63.7% and 37.4%, respectively. Power scaling of ultra-fast Cr2+:ZnS/ZnSe Kerr mode-locked lasers beyond 2 W level, as well as the shortest pulse duration of 29 fs, are also reported. New development of Fe:ZnSe laser with average output power > 35 W at 4.1 μm output wavelength and 100 Hz pulse repetition rate (PRR) was achieved in a nonselective cavity. With intracavity prim selector, wavelength tunability of 3.88-4.17 μm was obtained with maximum average output power of 23 W. We also report new results on Tm-fiber pumped passively and actively Q-switched Ho:YAG laser systems. High peak power actively Q-switched Ho:YAG laser demonstrates stable operation with pulse energy > 50 mJ, 12 ns pulse duration, and 100-1000 Hz PRR which correspondents to more than 4 MW peak power. The actively Q-switched Ho:YAG laser system optimized for high repetition rate delivers 40 W average output power at 10-100 kHz PRR. The Ho:YAG laser with passive Q-switcher demonstrates constant 5 mJ output energy from 200 Hz to 2.23 kHz PRR with optical slope efficiency with respect to Tm-fiber laser of ~43%.
In this paper, we report record nanosecond output energies of gain-switched Cr:ZnSe lasers pumped by Q-switched
Cr:Tm:Ho:YAG (100 ns @ 2.096 μm) and Raman shifted Nd:YAG lasers (7 ns @ 1.906 μm). In these experiments we
used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG
pumping, the first Cr:ZnSe laser demonstrated 3.1 mJ of output energy, 52% slope efficiency and 110 nm linewidth
centered at a wavelength of 2.47 μm. Maximum output energy of the second Cr:ZnSe laser reached 10.1 mJ under H2 Raman shifted Nd:YAG laser pumping. The slope efficiency estimated from the input-output data was 47%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.