We have developed a compact optical endoscopic probe for in vivo fluorescence optical imaging device. We obtained fluorescence image for the colon tissue of a mouse using a compacted optical endoscopic probe with a designed endoscopic optical lens. In order to demonstrate endoscopic fluorescence imaging for the colon cancer, we have manufactured a compacted optical endoscopic probe to pass through the biopsy channel of electric flexible endoscope. The compacted optical endoscopic probe with maximum outside diameter of 2.8mm consists of fiber-optic illumination part and imaging part. The imaging part consists of a fiber-optic imaging bundle linked to an endoscopic optical lens and focus assembly. We considered a compact structure, sensitivity, and FOV for the design of the endoscopic optical lens. We have suggested an endoscopic optical lens with an FOV of 90 ° and DOF of 3 – 80mm. The optical system consists of glass-based aspheric lenses. The total track is less than 2.5 mm, and the diameter is limited to less than 1.5 mm to obtain a compact system. We have presented the compacted optical endoscopic probe for cancer imaging of a mouse. The proposed endoscopic optical lens showed sufficient sensitivity and a wide field of view for obtaining fluorescence imaging. We demonstrated endoscopic ex vivo fluorescence imaging for the colon cancer of a mouse using the compacted optical endoscopic probe.
We have designed a fiber probe based optical diagnose system for detection of interspecies transmissibility. We have showed the optical performance to measure the optical signal of the target sample by using the manufactured fiber probe. We have confirmed the capability of our system to be utilized to biomedical diagnose applications.
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
Analog mean-delay (AMD) method is a new powerful alternative method in determining the lifetime of a fluorescence molecule for high-speed confocal fluorescence lifetime imaging microscopy (FLIM). Even though the photon economy and the lifetime precision of the AMD method are proven to be as good as the state-of-the-art time-correlated single photon counting (TC-SPC) method, there have been some speculations and concerns about the accuracy of this method. In the AMD method, the temporal waveform of an emitted fluorescence signal is directly recorded with a slow digitizer whose bandwidth is much lower than the temporal resolution of lifetime to be measured. We found that the drifts and the fluctuations of the absolute zero position in a measured temporal waveform are the major problems in the AMD method. As a referencing technique, we already proposed dual-channel waveform measurement scheme that may suppress these errors. In this study, we have demonstrated real-time confocal AMD-FLIM system with dual-channel waveform measurement technique.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.