Physically unclonable functions (PUFs) are designed to act as device ‘fingerprints.’ Given an input challenge, the PUF circuit should produce an unpredictable response for use in situations such as root-of-trust applications and other hardware-level cybersecurity applications. PUFs are typically subcircuits present within integrated circuits (ICs), and while conventional IC PUFs are well-understood, several implementations have proven vulnerable to malicious exploits, including those perpetrated by machine learning (ML)-based attacks. Such attacks can be difficult to prevent because they are often designed to work even when relatively few challenge-response pairs are known in advance. Hence the need for both more resilient PUF designs and analysis of ML-attack susceptibility. Previous work has developed a PUF for photonic integrated circuits (PICs). A PIC PUF not only produces unpredictable responses given manufacturing-introduced tolerances, but is also less prone to electromagnetic radiation eavesdropping attacks than a purely electronic IC PUF. In this work, we analyze the resilience of the proposed photonic PUF when subjected to ML-based attacks. Specifically, we describe a computational PUF model for producing the large datasets required for training ML attacks; we analyze the quality of the model; and we discuss the modeled PUF’s susceptibility to ML-based attacks. We find that the modeled PUF generates distributions that resemble uniform white noise, explaining the exhibited resilience to neural-network-based attacks designed to exploit latent relationships between challenges and responses. Preliminary analysis suggests that the PUF exhibits similar resilience to generative adversarial networks, and continued development will show whether more-sophisticated ML approaches better compromise the PUF and—if so—how design modifications might improve resilience.
Several cryptographic systems depend upon the computational difficulty of reversing cryptographic hash functions. Robust hash functions transform inputs to outputs in such a way that the inputs cannot be later retrieved in a reasonable amount of time even if the outputs and the function that created them are known. Consequently, hash functions can be cryptographically secure, and they are employed in encryption, authentication, and other security methods. It has been suggested that such cryptographically-secure hash functions will play a critical role in the era of post-quantum cryptography (PQC), as they do in conventional systems. In this work, we introduce a procedure that leverages the principle of reversibility to generate circuits that invert hash functions. We provide a proof-of-concept implementation and describe methods that allow for scaling the hash function inversion approach. Specifically, we implement one manifestation of the algorithm as part of a more general automated quantum circuit synthesis, compilation, and optimization toolkit. We illustrate production of reversible circuits for crypto-hash functions that inherently provide the inverse of the function, and we describe data structures that increase the scalability of the hash function inversion approach.
While photonic quantum circuits may be implemented using polarization-encoded qubits, their photonic integrated circuit (PIC) realization has been limited by on-chip impairments such as mode dispersion and polarization state stability that do not hinder bulk-optic, table-top setups. In this paper, we will present an interpretation of on-chip polarization and provide the beginning of a portfolio of components that may be used for polarization-encoded qubits. Central to our work is the use of waveguides of square cross-section, which symmetrically support orthogonal TE and TM modes with perpendicular electric fields. Preliminary designs for components to manipulate these modes are presented, along with measurements relevant to polarization in PICs. The research has relevance, as well, to sensing and security.
Reinforcement learning for agent autonomous actions requires many repetitive trials to succeed. The idea of this paper is to distribute the trials across a city-scale geospatial map. This has the advantage of providing rationale for the trial-totrial variance because each location is slightly different. The technique can simultaneously train the agent and deduce where difficult and potentially dangerous intersections exist in the city. The concept is illustrated using readily available open-source tools.
Various tools are now available to assist the roboticist in developing autonomy algorithms for tasks such as path planning or collision avoidance. Many tools support the integration of live or simulated RGB cameras, LIDAR, radar, and IMU sensors. This paper will describe adding an RF sensor. The proposed RF sensor detects radio and locates emitters in the environment for the purpose of collision avoidance. We outline an approach to share data to help locate and avoid collisions. The protocol is designed to maximize safety, privacy, security, timeliness, and other desirable properties discussed in the paper. Preliminary results are shown to illustrate the concepts.
Several prominent quantum computing algorithms—including Grover’s search algorithm and Shor’s algorithm for finding the prime factorization of an integer—employ subcircuits termed ‘oracles’ that embed a specific instance of a mathematical function into a corresponding bijective function that is then realized as a quantum circuit representation. Designing oracles, and particularly, designing them to be optimized for a particular use case, can be a non-trivial task. For example, the challenge of implementing quantum circuits in the current era of NISQ-based quantum computers generally dictates that they should be designed with a minimal number of qubits, as larger qubit counts increase the likelihood that computations will fail due to one or more of the qubits decohering. However, some quantum circuits require that function domain values be preserved, which can preclude using the minimal number of qubits in the oracle circuit. Thus, quantum oracles must be designed with a particular application in mind. In this work, we present two methods for automatic quantum oracle synthesis. One of these methods uses a minimal number of qubits, while the other preserves the function domain values while also minimizing the overall required number of qubits. For each method, we describe known quantum circuit use cases, and illustrate implementation using an automated quantum compilation and optimization tool to synthesize oracles for a set of benchmark functions; we can then compare the methods with metrics including required qubit count and quantum circuit complexity.
Random number generators (RNG) are essential elements in many cryptographic systems. True random number generators (TRNG) rely upon sources of randomness from natural processes such as those arising from quantum mechanics phenomena. We demonstrate that a quantum computer can serve as a high-quality, weakly random source for a generalized user-defined probability mass function (PMF). Specifically, QC measurement implements the process of variate sampling according to a user-specified PMF resulting in a word comprised of electronic bits that can then be processed by an extractor function to address inaccuracies due to non-ideal quantum gate operations and other system biases. We introduce an automated and flexible method for implementing a TRNG as a programmed quantum circuit that executes on commercially-available, gate-model quantum computers. The user specifies the desired word size as the number of qubits and a definition of the desired PMF. Based upon the user specification of the PMF, our compilation tool automatically synthesizes the desired TRNG as a structural OpenQASM file containing native gate operations that are optimized to reduce the circuit’s quantum depth. The resulting TRNG provides multiple bits of randomness for each execution/measurement cycle; thus, the number of random bits produced in each execution is limited only by the size of the QC. We provide experimental results to illustrate the viability of this approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.