We developed negative-tone chemically amplified molecular resists based on a fullerene derivative and evaluated the
lithographic performance using 75 keV electron beam (EB) exposure tool to explore the potential of fullerene derivatives
as a negative-type EB resist with high resolution and high etching durability. The etching rate of fullerene derivatives is
lower than that of conventional resist materials such as PHS, ZEP530 and UVIII. Although a dose of 800 μC/cm2 is
required, 60 nm line resolution and aspect ratio five was obtained in best of four kinds of fullerene derivative films. Also,
the effect of acid generators to a fullerene derivative resists were investigated. Fullerene derivative resists are a
promising candidate for nanolithography because it is essential for next generation lithography to have high aspect ratio related collapse of high resolution pattern and high etching durability in ultra-thin films.
We developed a chemically amplified molecular resist based on a fullerene derivative and evaluated the lithographic
performance using 75 keV electron beam (EB) exposure tool to explore the potential of fullerene derivatives as a
positive-type EB resist with high resolution and high sensitivity properties. The etching rate of fullerene derivative is
almost similar to that of ZEP and UVIII. Also, the fullerene derivative resist containing 6 wt% acid generator shows a
sensitivity of 33 &mgr;C/cm2 when it was exposed to 75 keV electron beam and postbaked at 170 °C. Although it required a
dose of 800 &mgr;C/cm2, a fullerene derivative film yielded line resolution of better than 30 nm. Moreover, the effect of the
types of acid generators to the resist performance of fullerene derivatives was investigated. It is very important for a
fullerene derivative resist to select appropriate acid generator and process conditions. Fullerene derivative resists are a
promising candidate for nanolithography.
For chemically amplified resists which generally consists of a polymer and an acid generator, the homogeneity of resist
materials is a serious issue. The incorporation of acid generators into polymers via covalent bonds has attracted much
attention because it removes the compatibility problem of acid generators with polymers. In this study, we designed a
single-component chemically amplified resist, taking advantage of the difference of reaction mechanisms between
electron beam and photoresists. The designed resist has a hydroxyl group as a proton source and halogen atoms as an
anion source for acid generation. The developed resist showed an excellent performance.
It is a well-known strategy for the improvement of resist performance to halogenate resist materials especially in electron beam and X-ray resists. However, the halogenation of polymers requires special caution for chemically amplified resists, because it may interfere with acid generation. In this work, the acid generation in poly[4-hydroxystyrene-co-4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropyl)-styrene] films was investigated. Acid yields decrease as the ratio of hexafluoroalcohol units increases. This study showed that the reactivity of the polymers with low energy electrons (~0eV) correlates to the decrease of acid yields.
In this study, we have demonstrated a resist process to fabricate sub 45-nm lines and spaces (L&S) patterns (1:1) by using electron projection lithography (EPL) for a back-end-of-line (BEOL) process for 45-nm technology node. As a starting point we tried to fabricate sub 45-nm L&S (1:1) patterns using a conventional EPL single-layer resist process. There, the resolution of the EPL resist patterns turned out to be limited to 70 nm L&S (1:1) with aspect ratio (AR) of 3.3 which was caused by pattern collapse during the drying step in resist develop process. It has been common knowledge that pattern collapse of this type could be prevented by reducing the surface tension of the rinse-liquid and by decreasing the AR of the resist patterns. Therefore, we first applied a surfactant rinse to a single-layer resist process that could control the pattern collapse by its reduced surface tension. In this experiment, we used the ArF resist instead of the EPL resist because the surfactant that we were able to obtain was the one optimized to the ArF resist materials. From the results of ArF resist experiments, it was guessed that it was difficult for the EPL resist to obtain the L&S patterns with AR of 3.5 or more even if we used the surfactant optimized to the EPL resist. And we found that it was considerably difficult to form 45-nm L&S patterns with AR of 5.1 that was our target. Next, we evaluated a EPL tri-layer resist process to prevent pattern collapse by decreasing the AR of the resist patterns. Because in a tri-layer resist process the purpose of the top-layer resist is to transfer pattern to the middle-layer, a thinner top-layer resist was selected. By using the tri-layer resist process we were able to control the resist pattern collapse and thus were successful in achieving 40-nm L/S (1:1) top-layer resist patterns with AR of 2.3. The process also gave us 40-nm L&S (1:1) patterns after low-k film etching. And moreover, using our tri-layer resist process we were able to fabricate a wiring device with Cu/low-k. Although it was our first attempt, the process resulted in a high yield of 70 % for a 60-nm (1:1) wiring device. As a part of our study we conducted failure analysis of the results of our experiment. We found that the failures were located at the edge of the wafer and might originate in the bottom-layer pattern collapse. We thought that the wiring yield could be increased by control the bottom-layer pattern collapse. These findings indicated that our tri-layer resist process had a high applicability for device fabrication in BEOL.
Immersion lithography has already demonstrated superior performance for next generation semiconductor manufacturing, while some challenges with contact immersion fluids and resist still
remain. There are many interactions to be considered with regards to the solid and liquid interface. Resist elusion in particular requires very careful attention since the impact on the lens and fluid supply system in exposure tool could pose a significant risk at the manufacturing stage. TOK developed a screening procedure to detect resist elution of ion species down to ppb levels during non and post exposure steps. It was found that the PAG cation elution is affected by molecular weight and structure while the PAG anion elution was dependent on the molecular structure and mobility. In this paper, lithographic performance is also discussed with the low elution type resist.
This paper describes an innovative approach to lithography processes using a supercritical fluid. The key idea is to improve a resist by exploiting the special properties of supercritical fluid: it is a good solvent with good diffusivity. The results of this study show that various kinds of molecules can be dissolved in supercritical carbon dioxide, and distributed uniformly throughout a resist. For example, the etch rate of ArF resist is reduced when functional molecules with a high etching durability are added to it. The unique feature of this technique is that the resist can be modified after exposure and development without damaging resist patterns. This technique constitutes a revolutionary way of enhancing resists that could have a big impact on resist composition and processes.
Optimized process parameters using the TOK OEBR-CAN024 resist for high chrome load patterning have been determined. A tight linearity tolerance for opaque and clear features, independent on the local pattern density, was the goal of our process integration work. For this purpose we evaluated a new correction method taking into account electron scattering and process influences. The method is based on matching of measured pattern geometry by iterative back-simulation using multiple Gauss and/or exponential functions. The obtained control function acts as input for the proximity correction software PROXECCO. Approaches with different pattern oversize and two Cr thicknesses were accomplished and the results have been reported. Isolated opaque and clear lines could be realized in a very tight linearity range. The increasing line width of small dense lines, induced by the etching process, could be corrected only partially.
Liquid immersion lithography (LIL) can extend the resolution of optical lithography well beyond today’s capabilities. The half-pitch limit is given by the well-known formula P=λ/(4/NA), where λ is the optical wavelength and NA=nsin(θ) is the numerical aperture of the exposure device with n the refractive index of the exposure medium. Through the use of exposure media such as purified water (n of 1.44 at 193 nm), it is possible to reduce minimum pitches by a factor of as much as 44% - a full technology node. Beyond this simple observation, there is a good deal of work necessary to fully understand the impact of LIL on a lithography processes. This paper will address issues con-cerning resist chemistry and the impact of water immersion on the imaging capabilities of different resist formulations. All resists were evaluated by imaging dense line-space structures at a 65-nm half-pitch both in air and with water im-mersion. Studies of dense 65-nm lines made by immersion imaging in HPLC grade water with controlled variations in resist components were performed. Significant differences were observed and will be discussed.
Using a full via first (FVF) dual damascene (DD) scheme for copper processing with low-k dielectrics has presented many new challenges to the semiconductor industry. Among those challenges, for photolithography, resist poisoning at the trench level has been the most daunting. Resist and bottom anti-reflective coating (BARC) screenings for poisoning at the 0.13 micrometers and 0.10 micrometers technology nodes have been performed on a variety of KrF and ArF resist and BARC platforms using a simple semi-qualitative method. By varying resist parameters such as resin, photoacid generator (PAG), and solvent types, a lithographically suitable KrF resist is found for the 0.13 micrometers node with minimal sensitivity to poisoning. In addition, ArF resists and BARCs were screened for their sensitivity to poisoning for the 0.10 micrometers node. Suitable resist and BARC candidates are identified for preliminary use for the 0.10 micrometers node.
High acceleration voltage electron beam exposure is one of the possible candidates for post-optical lithography. The use of electrons, instead of photons, avoids optical related problems such as the standing wave issues. However, resists must conform to certain needs for the SCALPEL system, such as exposure in a vacuum chamber with 100kv electron beams. Taking into account the challenging requirements of high resolution, high sensitivity, low bake dependency and no outgassing, TOK has been able to develop resists to meet most of the SCALPEL system needs. However, due to the nature of chemical amplification and the PEB dependency, as is the case with DUV resist which varies for different features, we must recommend different resist for multiple features such as dense lines, isolated lines and contact holes. TOK has designed an electron beam negative resist, EN-009, which demonstrate 100nm pattern resolution. The dose to print on the SCALPEL system is 5.0(mu) C/cm2. The electron beam positive resist, EP-004M, has been designed for line and space patterns. The dose to print on the SCALPEL system is 8.25(mu) C/cm2. The processing conditions are standard, using 0.26N developer. These are the lowest exposure energies reported to date for similar resolution on this exposure tools.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.