In this work, we demonstrate preliminary results for a hermetically sealed, metal-packaged fibre Bragg grating strain sensor for monitoring existing concrete wind turbine foundations. As the sensor is bolted to the sub-surface of the concrete, it is suitable for mounting onto uneven, wet and degraded surfaces, which may be found in buried foundations. The sensor was able to provide reliable measurements of concrete beam strain during cyclic three- and four- point bend tests. The strain sensitivity of the prototype sensor is currently 10 % of that of commercial, epoxied fibre strain sensors.
Wireless sensors networks are currently being used in different engineering fields such as civil, mechanical and
aerospace engineering for damage detection. Each network contains approximately hundreds to thousands of MEMS
sensors that communicate to its base station. These sensors are placed in different environments and locations that create
changes in their output due to obstacles or interference between them and their base station. A research study was
conducted on wireless MEMS sensor nodes to evaluate the noise level and the effect of environmental interferences as
well as their maximum distance communication. In this paper, the effect of interference environments and obstacles
such as magnetic field created by electricity and cell phone communications, concrete and metal enclosures, and
outside/inside environments were evaluated. In addition, a neural network computer simulation was developed to learn
and teach the users what it takes to classify signals such as time, amount of samples and overtraining in order to obtain
the correct output instead of an unknown. By gathering all this information it helps to save money and time in any
application wireless MEMS sensors are used and idealized models and pictures of communication paths have been
created for easier evaluation of the MEMS sensor networks.
Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.
Concerns about the safety of concrete dams have increased during recent years, partly because the population at risk in locations downstream of major dams continues to expand and also because these old dams are experiencing long-term damage and the seismic design concepts used to build them were inadequate. Reliable techniques for continuous monitoring of certain key parameters affecting the dams' integrity are currently nonexistent and this is because of the lack of sensing technology capable to function in a hostile environment such as low temperatures and high moisture level. This paper presents new low cost, passive and wireless micro-machined SAW-based sensors to monitor the safety and security of dams. These SAW sensors are composed of MEMS transducers, Nano-polymer actuators and an antenna, and are deposited on a thin film substrate. The sensors are passive, do not require power on-board and can be interrogated wireless using a radar. When embedded into concrete dams, the devices will be able to detect and locate internal cracks and measure certain key parameters affecting the durability of dams such as temperature, moisture, pH, chloride and carbon dioxide.
Civil engineering structures are large and their damage mechanism is complex requiring a large number of inexpensive, spatially distributed and wirelessly powered embedded sensing devices that support frequent and on-demand acquisition of real-time information about their state. Microelectromechanical Systems (MEMS) seem to have the necessary characteristics to meet these requirements. MEMS technology, such as, sensors, actuators and other engineered components can be embedded into concrete structures to provide sensing and interaction capabilities. By embedding active electronics with MEMS, the ability of the concrete structure to interpret its environment is improved. However, many challenges must be met in order to develop a mature MEMS technology for structural health monitoring (SHM). These challenges are primarily technical in nature and need to be addressed before this emerging technology can be implemented in different civil engineering structures. The objective of this paper is to study the feasibility of embedding MEMS devices into concrete material for conditioning and health monitoring of civil infrastructure. A research program was conducted to evaluate the durability and sensing capability of different embedded MEMS devices, and the findings are presented here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.