Intraocular pressure (IOP) varies quasi-periodically due to blood pulsation in vessels inside the eye globe. This variations cause the eye deformations and displacements of the outer surface of the eye. The aim of this paper is to calculate the correlation between longitudinal corneal apex displacement and cardiovascular activity. Using ultrasound transducer at sampling frequency of 100Hz we have measured longitudinal corneal apex displacement (LCAD) of the left eye for 5 subjects. Synchronically we have registered ECG and blood pulsation signals at the same sampling frequency. Cross-correlation function was applied to investigate dependencies between these signals. To find time shift between LCAD and ECG or pulse, the time window of 3 seconds length have been chosen from all signals and had been shifting with the step of 0.01 seconds from 0 to 7s. For each shift the cross-correlation function and its extrema were calculated in the window area. We have obtained information about extrema position of cross-correlation function and its stability in time for particular subjects. The time shift between LCAD and ECG or pulse is individual feature of each subject. Such calculations may lead us to better understanding of pulse propagation in human eye and creation a non invasive method of eye hemodynamics and ocular diagnosis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.