Photonic chips are becoming increasingly complex, combining even more optical building blocks on the same chip. With this growing complexity we also see an expanding need for, and use of electrical tuning. This imposes opportunities, as photonic circuits can now become reconfigurable at run time, even to the point of creating arbitrary connectivity between functional building blocks, serving as a general-purpose optical processor. But at the same time, large-scale configurability comes with some tremendous challenges in terms of power consumption, electrical and optical packaging, driver electronics and control algorithms. We will discuss our recent progress in these domains in our path to building general-purpose programmable photonic chips. Expanding silicon photonics with high-efficiency electro-optic tuners, high-density packaging solutions, and electronics and software layers to govern the behavior of these photonic circuits that can be used for both photonic and microwave analog signal processing.
KEYWORDS: Waveguides, Microelectromechanical systems, Phase shifts, Liquid crystals, Silicon photonics, Silicon, Photonic integrated circuits, Electrodes, Oxides, Back end of line
The demand for efficient actuators in photonics has peaked with increasing popularity for large-scale general-purpose programmable photonics circuits. We present our work to enhance an established silicon photonics platform with low-power micro-electromechanical (MEMS) and liquid crystal (LC) actuators to enable largescale programmable photonic integrated circuits (PICs).
We give an overview the progress of our work in silicon photonic programmable circuits, covering the technology stack from the photonic chip over the driver electronics, packaging technologies all the way to the software layers. On the photonic side, we show our recent results in large-scale silicon photonic circuits with different tuning technologies, including heaters, MEMS and liquid crystals, and their respective electronic driving schemes. We look into the scaling potential of these different technologies as the number of tunable elements in a circuit increases. Finally, we elaborate on the software routines for routing and filter synthesis to enable the photonic programmer.
We present our work in the European project MORPHIC to extend an established silicon photonics platform with low-power and non-volatile micro-electromechanical (MEMS) actuators to demonstrate large-scale programmable photonic integrated circuits (PICs).
We present our work to extend silicon photonics with MEMS actuators to enable low-power, large scale programmable photonic circuits. For this, we start from the existing iSiPP50G silicon photonics platform of IMEC, where we add free-standing movable waveguides using a few post-processing steps. This allows us to implement phase shifters and tunable couplers using electrostatically actuated MEMS, while at the same time maintaining all the original functionality of the silicon photonics platform. The MEMS devices are protected using a wafer-level sealing approach and interfaced with custom multi-channel driver and readout electronics.
Programmable photonic circuits, in contrast to classical photonic integrated circuits (PIC), can be configured at run-time to route light along different paths and perform different optical functions. This is accomplished by a mesh of interconnected waveguides that are coupled using electrically actuated tunable couplers and phase shifters. Such a waveguide mesh can redefine the connectivity between functional building blocks, but can also be configured into interferometric and resonant wavelength filters. The generic nature of such programmable PICs will lower the threshold to develop new applications based on photonic chips, in a similar way as programmable electronics.
In the European project MORPHIC we develop a platform for programmable silicon photonic circuits enabled by waveguide-integrated micro-electro-mechanical systems (MEMS). MEMS can add compact, and low-power phase shifters and couplers to an established silicon photonics platform with high-speed modulators and detectors. This MEMS technology is used for a new class of programmable photonic circuits, that can be reconfigured using electronics and software, consisting of large interconnected meshes of phase shifters and couplers. MORPHIC is also developing the packaging and driver electronics interfacing schemes for such large circuits, creating a supply chain for rapid prototyping new photonic chip concepts. These will be demonstrated in different applications, such as switching, beamforming and microwave photonics.
We present a detailed study of parameter sweeps of silicon photonic arrayed waveguide gratings (AWG), looking into the effects of phase errors in the delay lines, which are induced by fabrication variation. We fabricated AWGs with 8 wavelength channels spaced 200 GHz and 400 GHz apart. We swept the waveguide width of the delay lines, and also performed a sweep where we introduced increments of length to the waveguides to emulate different AWG layouts and look into the effect of the phase errors. With this more detailed study we could quantitatively confirm the results of earlier studies, showing the wider waveguides reduce the effect of phase errors and dramatically improve the performance of the AWGs in terms of insertion loss and crosstalk. We also looked into the effect of rotating the layout of the circuit on the mask, and here we could show that, contrary to results with older technologies, this no longer has an effect on the current generation of devices.
In the Information and Communications Technology (ICT) sector, the demands on bandwidth continually grow due to
increased microprocessor performance and the need to access ever increasing amounts of stored data. The introduction of
optical data transmission (e.g. glass fiber) to replace electronic transmission (e.g. copper wire) has alleviated the
bandwidth issue for communications over distances greater than 10 meters, however, the need has arisen for optical data
transfer over shorter distances such as those found inside computers. A possible solution for this is the use of low–cost
single mode polymer based optical waveguides fabricated by direct patterning Nanoimprint Lithography (NIL). NIL has
emerged as a scalable manufacturing technology capable of producing features down to the hundred nanometer scale
with the potential for large scale (roll-to-roll) manufacturing.
In this paper, we present results on the modeling, fabrication and characterization of single mode waveguides and optical
components in low-loss ORMOCER™ materials. Single mode waveguides with a mode field diameter of 7 μm and
passive structures such as bends, directional couplers and multi-mode interferometers (MMIs) suitable for use in 1550
nm optical interconnects were fabricated using wafer scale NIL processes. Process issues arising from the nano-imprint
technique such as residual layers and angled sidewalls are modeled and investigated for excess loss and higher order
mode excitation. Conclusions are drawn on the applicability of nano-imprinting to the fabrication of circuits for intrachip/
board-level optical interconnect.
Polymer-based integrated optics is attractive for inter-chip optical interconnection applications, for instance, for coupling photonic devices to fibers in high density packaging. In such a hybrid integration scheme, a key challenge is to achieve efficient optical coupling between the photonic chips and waveguides. With the single-mode polymer waveguides, the alignment tolerances become especially critical as compared to the typical accuracies of the patterning processes. We study novel techniques for such coupling requirements. In this paper, we present a waveguide-embedded micro-mirror structure, which can be aligned with high precision, even active alignment method is possible. The structure enables 90 degree bend coupling between a single-mode waveguide and a vertical-emitting/detecting chip, such as, a VCSEL or photodiode, which is embedded under the waveguide layer. Both the mirror structure and low-loss polymer waveguides are fabricated in a process based mainly on the direct-pattern UV nanoimprinting technology and on the use of UVcurable polymeric materials. Fabrication results of the coupling structure with waveguides are presented, and the critical alignment tolerances and manufacturability issues are discussed.
We present designs for sharp bends in polymer waveguides using colloidal photonic crystal (PhC) structures. Both silica
(SiO2) sphere based colloidal PhC and core-shell colloidal PhC structures having a titania (TiO2) core inside silica (SiO2)
shells are simulated. The simulation results show that core-shell Face Centered Cubic (FCC) colloidal crystals have a
sufficient refractive index contrast to open up a bandgap in the desired direction when integrated into polymer
waveguides and can achieve reflection <70% for the appropriate plane. Different crystal planes of the FCC structure are
investigated for their reflection and compared with the calculated bandstructure. Different techniques for fabrication of
PhC on rectangular seed layers namely slow sedimentation; spin coating and modified doctor blading are discussed and
investigated. FCC and Random FCC silica structures are characterized optically to show realisation of (001) FCC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.