Perovskite solar cells are called to revolutionize the field of optoelectronic due to their intrinsic high absorption. Photonic structuration is widely reported as an efficient way to improve light harvesting. Nevertheless, little is known on the combination of photonic structuring and perovskite material.
In this study, photonically-structured TiO2 is considered as photoanode layer for perovskite solar cells in a will to enhance light absorption through the excitation of quasi-guided modes within the photoactive perovskite material, while optimizing the charge collection and the global efficiency in the photovoltaic assemblies. Consequently, the photo-active layer is structured using opal-like perovskite layers (monolayers, bilayers or trilayers) made of perovskite (full or truncated) spheres, including hybrid uniform/structured layers, embedded in a TiO2 matrix. We present both numerical simulations and experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.