Multi-line transmit (MLT) imaging enables the acquisition of high frame rate (HFR) data in ultrasound imaging, especially in echocardiography where capturing rapid events associated with heart motion can provide valuable information for disease diagnosis. MLT beams are generated by simultaneously transmitting multiple focused beams in different spatial directions within a single pulse-echo event. The main drawback of MLT imaging is the generation of crosstalk artifacts due to the interferences between multiple beams and targets, which will in turn decorrelate the backscattered echoes and will reduce the spatial coherence significantly, leading to poor image quality. In this study, we have investigated the effects of synthetic focusing on the overall coherence of the received signals. We have shown that achieving more accurate focusing due to the implementation of synthetic aperture beamformers could be less susceptible to the artifacts introduced with MLT, and this will in turn improve the coherence of the backscattered signals, resulting in an improved image quality. Simulation, phantom, and in-vivo experiments have been conducted to demonstrate that spatial coherence enhances as a result of synthetic focusing in MLT imaging (especially away from the transmit focus). Furthermore, we have implemented synthetic aperture methods together with coherence-based techniques to investigate their synergistic performance in further suppressing the incoherent backscattered echoes and improving target detectability. The results demonstrate that this provides considerable benefits in rejecting MLT crosstalk artifacts compared to the conventional dynamic receive focusing.
KEYWORDS: Signal to noise ratio, Target detection, Apodization, Ultrasonography, Speckle, Point spread functions, Image processing, Computer programming, Transducers, Data modeling
Multiline transmit (MLT) imaging has been demonstrated to provide benefits in frame rate by sending sound in multiple directions during a single pulse-echo event, but at the expense of "cross-talk" artifacts. These artifacts arise from the fact that the multiple transmit beams have side lobes that overlap in space, as do receive focusing beams. These result in a degradation of contrast and target detectability in reconstructed images. Several solutions have been demonstrated to reduce these artifacts, including transmit/receive apodization, adaptive beamforming, and coherence processing. We demonstrate a new approach to reconstructing these data by recognizing the MLT acquisition sequence as a spatiotemporal encoding of the array data. Decoding of these data enable improved focusing by synthetic aperture methods and reduce cross-talk artifacts. Simulation and phantom experiments demonstrate improvements in lesion detectability and signal-to-noise ratio compared to conventional dynamic receive focusing.
Limited options exist to improve oxygenation in patients with acute hypoxic respiratory failure. We are developing an intravascular oxygenator catheter capable of delivering a clinically significant amount of O2 directly into the bloodstream. A critical design consideration is minimizing the risk of embolism. We demonstrate the use of ultrafast ultrasound imaging, coherence beamforming, and image processing to quantify bubble formation in a benchtop flow circuit. We found no significant increase in bubble counts throughout 30 minutes of oxygenation using the device.
The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities.
Harmonic imaging has been a breakthrough for the quality of clinical ultrasound imaging, greatly reducing the acoustic clutter that typically reduces in vivo image quality. The generation of the second harmonic signal by non-linear propagation is optimized for a focused transmission in which focal gain raises the fundamental pressure. However, the signal-to-noise ratio (SNR) of the harmonic backscattered signal is lower than for the fundamental frequency. We demonstrate the application of Retrospective Encoding For Conventional Ultrasound Sequences (REFoCUS), a framework for performing spatial decoding of existing pulse sequences irrespective of transducer or scan geometry, to improve transmit depth of field and SNR in harmonic imaging. Unlike other spatial coding methods, REFoCUS allows for maintaining a transmit focus and the corresponding harmonic generation. We demonstrate the ability to recover the effective transmit element sources that would linearly produce the observed harmonic fields, enabling individual transmit element processing. The technique is applied to in vivo liver and fetal targets to produce improved image quality away from the original transmit focal depth using the same data.
Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA—called synthetic tracked aperture ultrasound (STRATUS) imaging—by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.
When imaging with ultrasound through the chest wall, it is not uncommon for parts of the array to get blocked by ribs, which can limit the acoustic window and significantly impede visualization of the structures of interest. With the development of large-aperture, high-element-count, 2-D arrays and their potential use in transthoracic imaging, detecting and compensating for the blocked elements is becoming increasingly important.
We synthesized large coherent 2-D apertures and used them to image a point target through excised samples of canine chest wall. Blocked elements are detected based on low amplitude of their signals. As a part of compensation, blocked elements are turned off on transmit (Tx) and receive (Rx), and point-target images are created using: coherent summation of the remaining channels, compounding of intercostal apertures, and adaptive weighting of the available Tx/Rx channel-pairs to recover the desired k-space response. The adaptive compensation method also includes a phase aberration correction to ensure that the non-blocked Tx/Rx channel pairs are summed coherently.
To evaluate the methods, we compare the point-spread functions (PSFs) and near-field clutter levels for the transcostal and control acquisitions. Specifically, applying k-space compensation to the sparse aperture data created from the control acquisition reduces sidelobes from -6.6 dB to -12 dB. When applied to the transcostal data in combination with phase-aberration correction, the same method reduces sidelobes only by 3 dB, likely due to significant tissue induced acoustic noise. For the transcostal acquisition, turning off blocked elements and applying uniform weighting results in maximum clutter reduction of 5 dB on average, while the PSF stays intact. Compounding reduces clutter by about 3 dB while the k-space compensation increases clutter magnitude to the non-compensated levels.
Ultrasound imaging of deep targets is limited by the resolution of current ultrasound systems based on the available aperture size. We propose a system to synthesize an extended effective aperture in order to improve resolution and target detectability at depth using a precisely-tracked transducer swept across the region of interest. A Field II simulation was performed to demonstrate the swept aperture approach in both the spatial and frequency domains. The adaptively beam-formed system was tested experimentally using a volumetric transducer and an ex vivo canine abdominal layer to evaluate the impact of clutter-generating tissue on the resulting point spread function. Resolution was improved by 73% using a 30.8 degree sweep despite the presence of varying aberration across the array with an amplitude on the order of 100 ns. Slight variations were observed in the magnitude and position of side lobes compared to the control case, but overall image quality was not significantly degraded as compared by a simulation based on the experimental point spread function. We conclude that the swept aperture imaging system may be a valuable tool for synthesizing large effective apertures using conventional ultrasound hardware.
KEYWORDS: Ultrasonography, Scanners, Coherence imaging, Coherence (optics), Spatial coherence, Data acquisition, Kidney, Tissues, In vivo imaging, Signal detection
Conventional B-mode ultrasound images suffer from clutter composed of reverberation and aberration that exhibit only partial spatial coherence, making it possible to suppress these confounding signals using coherence- based imaging techniques. Coherence is typically measured by transmitting a focused wave into the tissue and computing the covariance of the returned echo signals across all combinations of receive channel pairs. We mathematically and experimentally prove the equivalence of the coherence measured as a function of transmit channel and as a function of receive channel. This forms the basis for an alternative method of coherence measurement using a synthetic aperture technique to store focused and summed receive channel data as a function of transmit channel. This technique avoids the need for access to individual receive channel data and is compatible with the existing signal pipeline on common commercial clinical scanners. We demonstrate in vivo short-lag spatial coherence imaging of the human liver to produce images with reduced clutter, using an ACUSON SC2000 ultrasound system to acquire data and perform full synthetic aperture focusing. The possibility to trade-off image quality for acquisition time is also presented in an effort to make the proposed sequences more accessible for real-time imaging.
KEYWORDS: Speckle, In vivo imaging, Signal to noise ratio, Image quality, Point spread functions, Data acquisition, Transducers, Target acquisition, Tissues, Ultrasonography
Conventional wisdom in ultrasonic array design drives development towards larger arrays because of the inverse
relationship between aperture size and resolution. We propose a method using synthetic aperture beamforming
to study image quality as a function of aperture size in simulation, in a phantom and in vivo. A single data acquisition can be beamformed to produce matched images with a range of aperture sizes, even in the presence of target motion. In this framework we evaluate the reliability of typical image quality metrics – speckle signal-tonoise ratio, contrast and contrast-to-noise ratio – for use in in vivo studies. Phantom and simulation studies are in good agreement in that there exists a point of diminishing returns in image quality at larger aperture sizes. We demonstrate challenges in applying and interpreting these metrics in vivo, showing results in hypoechoic vasculature regions. We explore the use of speckle brightness to describe image quality in the presence of in vivo clutter and underlying tissue inhomogeneities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.