Aggregates of misfolded α-Synuclein in the brain represent a hallmark of Parkinson’s disease (PD). In patients and animal models, phosphorylated α-Synuclein was detected in the gut, hence, raising the hypothesis that early-stage PD could be diagnosed based on colon tissues. Marker-independent technologies represent an ideal method to monitor disease progression and potentially detect early-stage aggregated α-Synuclein in vivo. Here, formalin-fixed, paraffinembedded colon tissues of a transgenic rat model were analyzed using Raman imaging. Detailed spectral and imagebased analysis was performed indicating the major spectral shifts that alter in PD rat tissues in the amide I region. Peak fitting and multivariate analysis specified an increase of β-sheet proteins in transgenic rat colon compared with wild-type colon. In summary, Raman imaging is capable to detect α-Synuclein aggregates in colon tissues of a PD rat model, indicating that it could be a useful tool to support diagnosis in PD pathology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.