The 4-meter Multi-Object Spectroscopic Telescope (4MOST), wide-field, high-multiplex spectroscopic survey facility will enable the simultaneous spectroscopy of up to 2400 targets within a 2.5° diameter field of view. A secondary guider system optical relay and data production description is described. The role of this guider is for fine rotational and target alignment corrections. The output of the 12 times 7 fibres are arranged such that the CCD detector can be read out in continuous read mode. The position of all fibres are illuminated at their spectrograph end and measured using a camera system at the positioner end. For the secondary guide bundles, only the central fibre is illuminated. A notch filter is used in the image relay in such a way that that the back illumination light is reflected from back illumination fibres to illuminate only the central fibres of each guide probe. This allows on-sky guiding while the fibres are being positioned.
The 4-metre Multi-Object Spectroscopic Telescope (4MOST) instrument uses 2436 individually positioned optical fibres to couple the light of targets into its spectrographs. The metrology system determines the position of the back-illuminated fibres on the focal surface of the telescope. It consists of 4 identical cameras that are mounted on the spider vanes of the secondary mirror of the VISTA telescope and look through the entire optical train, including M1, M2 and the WFC/ADC unit. Here, we present an exhaustive study on the expected centroiding errors, including but not limited to lens fabrication errors, seeing, mirror distortions and parallax effects.
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where ~2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) of the European Southern Observatory (ESO). The primary and secondary mirrors (M1 and M2) together with the Wide Field Corrector (WFC) system provide a pupil-centric and aberration corrected focal surface. The WFC is also an integral part of the metrology system. At the focal surface, we meet two wave front sensing (WFS) systems, a deployable camera at commissioning, an acquisition and guiding (A and G) unit and a secondary guiding unit. This paper provides an overview of design details and Manufacture, Assembly, Integration and Verification (MAIV) processes for the 4MOST WFC system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.