The Remote Sensing Group at the University of Arizona has used ground-based test sites for the vicarious calibration of airborne and satellite-based sensors. Past work has focused on high-spatial-resolution sensors that are well- suited to the reflectance-, irradiance-, and radiance-based methods. Application of these methods to the Moderate Resolution Imaging Spectroradiometer (MODIS) with its lower spatial resolution pose a challenge for vicarious calibraiton. This work presents a cross-calibration approach using the high spatial resolution sensor Enhanced Thematic Mapper Plus (TEM+) on the Landat-7 platform that allows the reflectance-based results of ETM+ to be scaled to the larger footprint of MODIS. This calibration takes into account the changes in solar zenith angle due to the 40- minute separation in overpass times of the two sensors which view the test sites on the same day with the same view angle. Also included are corrections due to the spectral differences between the sensors. Early results show that MODIS and ETM+ agree to better than 5% in the solar reflective for bands not affected by atmospheric absorption.
The Remote Sensing Group at the University of Arizona has used ground-based test sites for the vicarious calibration of airborne and satellite-based sensors. Past work has focused on high-spatial-resolution sensors that are well-suited to the reflectance-, irradiance-, and radiance-based methods. Application of these methods to the recently launched Moderate Resolution Imaging Spectroradiometer (MODIS) with its lower spatial resolution poses a challenge for vicarious calibration. This work presents the modifications that must be made to reflectance-, irradiance-, and radiance-based approaches in order to use them for MODIS. The reflectance-based method described here relies on ground-based measurements of the reflectance of both large- and small-scale areas of the test site as well as low-level aircraft data to scale the ground-based measurements to the spatial scale of a MODIS pixel. The radiance-based approach relies on a recently-developed airborne, non-imaging radiometer with an 80-m footprint sampling the test site with a predetermined strategy to account for the differing spatial resolutions. Because this sampling strategy depends upon the test site being use, this work describes the two primary test sites of Railroad Valley Playa in Nevada and White Sands Missile Range in New Mexico and the spectral and spatial effects these sites will have on the calibration of MODIS. Early results from application of the reflectance-based method to MODIS using data from April 2000 indicate that the radiometric response of MODIS has not changed significantly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.