KEYWORDS: 3D scanning, Cameras, 3D modeling, Data modeling, Point clouds, Infrared cameras, Education and training, Design, Stereoscopic cameras, Neural networks
Modern 3D scanning technologies have revolutionized various industries, including healthcare and biomedical engineering. This research explores the application of 3D scanning in the field of medicine, focusing on the representation of 3D hand data using the SIREN (Sinusoidal Representation Network) approach. 3D scanning plays a vital role in hand prosthetics, enabling the development of personalized models that accurately replicate the shape and size of real hands. This allows for the production of prostheses tailored to the specific needs of patients, facilitating their reintegration into active life. RealSense 3D cameras, developed by Intel, are among the leading technologies for 3D scanning. However, the effective utilization of implicit representation of 3D data, such as SIREN, presents challenges in ensuring compatibility with the features and limitations of existing 3D scanning technologies. This study analyses the potential of SIREN for 3D hand data representation, addressing the existing constraints and limitations. By leveraging the capabilities of RealSense cameras and the flexibility of SIREN, we aim to enhance the analysis and processing of 3D data, opening new avenues for prosthesis design.
This paper investigates the relationship between the integral equation and Kirchhoff approximation in the diffraction theory of coherent radiance. The spectrum of the reflected wave is formed in the far field (Fraunhofer zone) and the solution is to Fourier transform of effective reflectance coefficient of a surface. In the paper, the analytical relationship between the method of solving an integral equation and the Kirchhoff approximation has been proven. It helps to define the structure of the field of diffracted waves in a Fraunhofer zone for coherent scattered light. The analytical equations for calculation of the average value of intensity scattering field and the mirror reflection coefficient of a rough surface have been obtained. Analysis of the components of the scattering coherent light coming from a metal surface has been improved. It helps to specify the data processing algorithms for evaluation of statistical characteristics of rough surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.