The paper presents a mathematical model of linear and nonlinear processes occurring due to propagation of femtosecond laser pulses in vitreous of the human eye. By methods of numerical simulation, we have solved a nonlinear spectral equation describing dynamics of two-dimensional TE-polarized radiation. The solution was performed in a homogeneous isotropic medium with instantaneous cubic nonlinearity without using slowly varying envelope approximation. For simulation we used medium with parameters close to the optical media of the eye. The model of femtosecond radiation takes into account the dynamics of the process of dispersion pulse broadening in time and occurrence of self-focusing of the retina when passing through vitreous body of the eye. The dependence between pulse duration on the retina and duration of the input pulse was found, as well as the values of power density at which self-focusing occurs. It was shown that the main mechanism of radiation damage caused while using Ti-sapphire laser is photoionization. The results coincide with the results obtained by other scientists. They can be used to create Russian laser safety standards for femtosecond laser systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.